MHB How Do I Solve the Wave Equation with Given Initial Data?

Click For Summary
To solve the wave equation with the given initial data, start by using the solution form u(x,t) = F(x+ct) + G(x-ct). Setting t=0 leads to the condition F(x) + G(x) = 0, which implies G(x) = -F(x). The expression for u becomes u(x,t) = F(x+ct) - F(x-ct). By differentiating with respect to t and applying the initial condition for u_t, you derive the equation 2cF'(x) = x/(x^2+1)^2. Finally, integrate F' to find F and complete the solution.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everybody,

I am confused about how to start with the following problem: using the solution from ex. 3:
$u(x,t)=F(x+ct)+G(x-ct)$

"For data u(x,0)=0 and ${u}_{t}=\frac{x}{(x^2+1)^2}$ where x is from neg. infinity to pos. infinity."

Thanks
Cbarker1
 
Physics news on Phys.org
Hi Cbarker1,

Try using the method that Klaas van Aarsen and I discussed with you the other day. Feel free to let me know if there are any issues.
 
Cbarker1 said:
Dear Everybody,

I am confused about how to start with the following problem: using the solution from ex. 3:
$u(x,t)=F(x+ct)+G(x-ct)$

"For data u(x,0)=0 and ${u}_{t}=\frac{x}{(x^2+1)^2}$ where x is from neg. infinity to pos. infinity."

Thanks
Cbarker1

Setting t= 0 in $u(x,t)= F(x+ ct)+ G(x- ct)$ gives $u(x, 0)= F(x)+ G(x)= 0$ so $F(x)= -G(x)$. That is, $u(x,t)= F(x+ ct)- F(x- ct)$. Differentiating that with respect to t, $u_t(x, t)= cF'(x+ ct)+ cF'(x- ct)$. Setting t= 0 in that (I presume you mean "$u_t(x, 0)= \frac{x}{(x^2+1)^2}$) we have $2cF'(x)= \frac{x}{(x^2+1)^2}$ so that $F'(x)= \frac{x}{2c(x^2+ 1)^2}$. Integrate that to find F.
 

Similar threads

Replies
11
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K