MHB How Do Probability Formulas for Bayes Theorem and Exponential Distribution Work?

  • Thread starter Thread starter Longines
  • Start date Start date
  • Tags Tags
    Parameters
Longines
Messages
9
Reaction score
0
Hey guys,

I don't understand how this question works... I don't understand the answers either. Could someone take me through this step-by-step?

See attached image:
 

Attachments

  • Screenshot 2014-09-20 20.20.08.png
    Screenshot 2014-09-20 20.20.08.png
    39.1 KB · Views: 81
Physics news on Phys.org
Longines said:
Hey guys,

I don't understand how this question works... I don't understand the answers either. Could someone take me through this step-by-step?

See attached image:

a) is...

$\displaystyle P \{ G = k\} = \int_{k-1}^{k} e^{- \lambda\ x}\ d x = e^{\lambda\ k} (e^{\lambda} - 1)\ (1)$

b) for the Bayes theorem is...

$\displaystyle P\{X > k + x| G > k \} = \frac{P \{ X > k + x \}}{P\{X>k \}} = \frac{e^{- \lambda\ (k + x)}}{e^{- \lambda\ k}} = e^{- \lambda\ x}\ (2) $

Kind regards

$\chi$ $\sigma$
 
chisigma said:
a) is...

$\displaystyle P \{ G = k\} = \int_{k-1}^{k} e^{- \lambda\ x}\ d x = e^{\lambda\ k} (e^{\lambda} - 1)\ (1)$

b) for the Bayes theorem is...

$\displaystyle P\{X > k + x| G > k \} = \frac{P \{ X > k + x \}}{P\{X>k \}} = \frac{e^{- \lambda\ (k + x)}}{e^{- \lambda\ k}} = e^{- \lambda\ x}\ (2) $

Kind regards

$\chi$ $\sigma$
Lol... once again, a simple step that I did not see.

Thank you
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top