How Do Scientists Determine the Composition of a Star's Core?

Click For Summary
SUMMARY

Astronomers determine the composition of a star's core primarily through the analysis of absorption spectra, which reveals the elements present in the star's atmosphere. The chromosphere, a low-density region above the photosphere, absorbs specific wavelengths of light, allowing scientists to infer the star's atmospheric composition. However, the core's composition, predominantly hydrogen, is established through physical laws and the measurement of neutrino flux, which aligns with theoretical predictions. This comprehensive model integrates various observations, confirming the core's hydrogen content and supporting the understanding of stellar evolution.

PREREQUISITES
  • Understanding of absorption spectra and their role in astrophysics
  • Familiarity with stellar structure, including the photosphere and chromosphere
  • Knowledge of nuclear fusion processes in stars
  • Basic principles of neutrino physics and their significance in astrophysics
NEXT STEPS
  • Research the process of nuclear fusion in stars, focusing on the proton-proton chain reaction
  • Study the role of neutrinos in stellar processes and their detection methods
  • Explore the characteristics of the chromosphere and photosphere in stellar atmospheres
  • Investigate models of stellar evolution and the lifecycle of main sequence stars
USEFUL FOR

Astronomers, astrophysicists, and students interested in stellar composition and evolution will benefit from this discussion, particularly those focusing on the mechanisms of nuclear fusion and the observational techniques used in astrophysics.

Jimmy87
Messages
692
Reaction score
19
Hi pf. As I understand we know what a star is made of by looking at the absorption spectrum from a star. Since a star is a black-body it gives out a continuous spectrum of light but as this light passes through the Sun's atmosphere, certain wavelengths are absorbed depending on what the star is made of.

My question is, how do we know what the rest of the star is made of? Surely from this method you only know what elements are in the atmosphere of the star?
 
Astronomy news on Phys.org
Jimmy87 said:
My question is, how do we know what the rest of the star is made of? Surely from this method you only know what elements are in the atmosphere of the star?
hi Jimmy

here's a comment that should answer you question ...

Absorption Spectra From Stars
The light that moves outward through the sun is what astronomers call a continuous spectrum since the interior regions of the sun have high density. However, when the light reaches the low density region of the solar atmosphere called the chromosphere, some colors of light are absorbed. This occurs because the chromosphere is cool enough for electrons to be bound to nuclei there. Thus, the colors of light whose energy corresponds to the energy difference between permitted electron energy levels are absorbed (and later reemitted in random directions). Thus, when astronomers take spectra of the sun and other stars they see an absorption spectrum due to the absorption of the chromosphere.

from this site ...
http://astro.unl.edu/naap/hr/hr_background1.htmlNote that the chromosphere is what we see as the visible surface of the sun that is at ~ 6000K
so as such, you are looking at the spectra of the sun ( other star)

EDIT ... I err'ed there, the photosphere is the visible surface of the sun sorry
the chromosphere is directly above the photosphere
Dave
 
Last edited:
  • Like
Likes   Reactions: Jimmy87
davenn said:
hi Jimmy

here's a comment that should answer you question ...
from this site ...
http://astro.unl.edu/naap/hr/hr_background1.htmlNote that the chromosphere is what we see as the visible surface of the sun that is at ~ 6000C
so as such, you are looking at the spectra of the sun ( other star)Dave
Great thanks. But how do we know what the core is made of? You always here scientists say "the Sun is made up of a core of hydrogen". How do they know this because the absorption spectra only tells you about the composition of the chromosphere. Or do you just say that the chromosphere is a representation of what the whole star is made of?
 
Jimmy87 said:
Great thanks. But how do we know what the core is made of? You always here scientists say "the Sun is made up of a core of hydrogen". How do they know this because the absorption spectra only tells you about the composition of the chromosphere. Or do you just say that the chromosphere is a representation of what the whole star is made of?

Well, if we assume that a star is initially composed of mostly hydrogen, we can then determine what should happen to the core using known physical laws. These laws tell us that the core should be millions of degrees kelvin and under immense pressure. These laws also tell us that at the temperature and density that we think a star's core is at, hydrogen should fuse together to form helium in a specific chain of events that release a large neutrino flux from the core. The neutrino flux from the Sun has been measured and it indeed matches the amount predicted by theory.

Prior to measuring the neutrino flux, we had to simply trust that our models were correct since they appeared to make good predictions about stellar temperatures vs mass and other features. In the end there really isn't one thing, or even a few things, that supports the idea that a main sequence star's core is composed primarily of fusing hydrogen. A great many different things all add together to form a complete model, and if a star's core were not made up of hydrogen then we'd have a very serious mismatch between different parts of the model. For one thing, we can see vast clouds of hydrogen gas collapsing under gravity. If a star's core isn't made up of hydrogen, then what else could it be made of? There isn't enough non-hydrogen material in these collapsing clouds to form the core of a star. If hydrogen isn't being fused in the core, then where is the energy coming from and why does the age of the solar system, dated through radioactive dating, match so well with the prediction that the Sun is halfway through its fuel supply of hydrogen? (no other fuel source gives enough energy for the Sun to last 4.5 billion years or so) Why does our model match many different observations so well if it's wrong?
 
  • Like
Likes   Reactions: Jimmy87 and AgentSmith

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
Replies
8
Views
4K
  • · Replies 42 ·
2
Replies
42
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 48 ·
2
Replies
48
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K