mt91
- 13
- 0
Anyone able to calculate the steady states?
Cheers, it was the wording of the question I struggled with, because it said as a function of E. So this is what I did:Country Boy said:Do you not know what a "steady state" IS? A steady state is a constant solution to the differential equation. And if it is constant, $\frac{du*}{dt}= 0$
So $\frac{du*}{dt}= 0= u*(1- u*)(1+ u*)- Eu*$.
Solve that third degree equation for u*.
Country Boy said:Then you should have said, in your first post, that your difficulty was with solving the cubic equation, not with the "steady state" of the differential equation! I am concerned that, in a problem involving differential equations, your difficulty is with solving a quadratic equation! In fact, your difficulty is with solving an equation of the form "$x^2= a$".
Yes, Eu*= u*(1- u*)(1+ u*). u*= 0 is a solution. If u* is not 0 we can divide by u* to get E= (1- u*)(1+ u*).
But that does NOT give u*= 1- E or u*= 1+ E as solutions! You would have seen that if you had checked: If u*= 1- E then 1- u*= 1-1+ E= E and 1+ E= 2- E. $(1- u*)(1+ u*)= E(2- E)= 2E- E^2$.
From $E= (1- u*)(1+ u*)= 1- u*^2$ we get $u*^2= 1- E$ so that $u*= \pm\sqrt{1- E}$.
Thanks, do you know much about how you would interpret relevant steady states? So the steady state equation was about an animal population. If a steady state is 0 is this indicating that there's no population? and the negative square root steady state is indicating a decline in the population?Country Boy said:Yes.
The population is u(t). If for any t, u(t)= 0, there is no population so, of course, it cannot decrease and is not going to increase so stays 0. 0 is always a "steady state" for a population. (Unless you allow "spontaneous generation"!)mt91 said:Thanks, do you know much about how you would interpret relevant steady states? So the steady state equation was about an animal population. If a steady state is 0 is this indicating that there's no population?
No, the whole point of "steady state" is that it is steady, it is NOT changing, neither decreasing nor increasing. A negative value here is a mathematically a solution to the equation but is not a realistic solution- the number of animals cannot be negative.and the negative square root steady state is indicating a decline in the population?