How Do the Fractions A and B Differ in Value and Structure?

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Compare
Click For Summary

Discussion Overview

The discussion focuses on comparing the values and structures of two mathematical expressions, A and B, defined in terms of square roots. The scope includes mathematical reasoning and comparisons between the two expressions.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Post 1 presents the expressions for A and B and requests a comparison.
  • Post 2 reiterates the expressions for A and B and indicates a solution is forthcoming.
  • Post 3 provides a detailed mathematical approach to compare A and B, concluding that A is greater than B based on the derived inequality.
  • Post 4 also compares A and B using a similar method, ultimately arriving at the same conclusion that A is greater than B, but presents the reasoning in a slightly different format.

Areas of Agreement / Disagreement

While both Post 3 and Post 4 conclude that A is greater than B, the discussion does not resolve whether this conclusion is universally accepted, as the initial posts do not provide a definitive agreement on the comparison.

Contextual Notes

The comparison relies on specific mathematical manipulations and assumptions about the values of A and B, which may not be universally applicable without further context or constraints.

Albert1
Messages
1,221
Reaction score
0
A=$\dfrac {\sqrt {998}+9}{\sqrt{998}+8}$

B=$\dfrac {\sqrt {999}+9}{\sqrt{999}+8}$

Please compare A and B
 
Last edited:
Mathematics news on Phys.org
Albert said:
A=$\dfrac {\sqrt {998}+9}{\sqrt{998}+8}$

B=$\dfrac {\sqrt {999}+9}{\sqrt{999}+8}$

My solution:

If we let $f(x)=\dfrac {\sqrt {x}+9}{\sqrt{x}+8}$, differentiate it w.r.t $x$ we get $f'(x)=\dfrac {-1}{2\sqrt{x}(\sqrt{x}+8)^2}$, i.e. $f'(x)<0$ for all real $x$, or more specifically, $f'(x+1)<f'(x)$ and this implies $f(x)>f(x+1)$, hence, we can say that $A=f(998)=\dfrac {\sqrt {998}+9}{\sqrt{998}+8}>B=f(998+1)=\dfrac {\sqrt {999}+9}{\sqrt{999}+8}$.
 
Albert said:
A=$\dfrac {\sqrt {998}+9}{\sqrt{998}+8}$

B=$\dfrac {\sqrt {999}+9}{\sqrt{999}+8}$

Please compare A and B

$ let \,\,x=998$

$A-B$ = $\dfrac{1}{(\sqrt {x}+8)(\sqrt{x+1}+8\big)}\times \big [(\sqrt{x}+9)(\sqrt{x+1}+8\big)- (\sqrt{x+1}+9)(\sqrt{x}+8\big )\big ]$

=$\dfrac{1}{(\sqrt {x}+8\big)(\sqrt{x+1}+8 \big)}\times (\sqrt {x+1} -\sqrt {x}\big)>0$

$\therefore A>B$
 
Last edited:
Hello, Albert!

$A\:=\:\dfrac{\sqrt {998}+9}{\sqrt{998}+8}$

$B\:=\:\dfrac{\sqrt {999}+9}{\sqrt{999}+8}$

\text{Compare }A\text{ and }B.
Let x = 998

. . . . . . . . . . . . . . . . A \:\gtrless\:B

. . . . . . . . . . . \frac{\sqrt{x}+9}{\sqrt{x}+8} \;\gtrless\;\frac{\sqrt{x+1}+9}{\sqrt{x+1}+8}

\left(\sqrt{x}+9\right)\left(\sqrt{x+1}+8\right) \;\gtrless\;(\sqrt{x}+8)(\sqrt{x+1}+9)

\sqrt{x(x+1)} + 8\sqrt{x} + 9\sqrt{x+1} + 72
. . . . . . . . . . . . \gtrless\:\sqrt{x(x+1)} + 9\sqrt{x} + 8\sqrt{x+1} + 72

. . . . . 8\sqrt{x} + 9\sqrt{x+1} \:\gtrless\:9\sqrt{x} + 8\sqrt{x+1}

. . . . . . . . . . . .\sqrt{x+1} \;{\color{red}&gt;}\; \sqrt{x}

\text{Therefore: }\:A \:&gt;\:B
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
1K