How Do the Fractions A and B Differ in Value and Structure?

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Compare
Click For Summary
SUMMARY

The discussion compares the values of two mathematical expressions, A and B, defined as A=$\dfrac {\sqrt {998}+9}{\sqrt{998}+8}$ and B=$\dfrac {\sqrt {999}+9}{\sqrt{999}+8}$. Through algebraic manipulation, it is established that A is greater than B, as shown by the inequality derived from the expressions. The key conclusion is that A > B, confirmed by evaluating the difference A - B, which is positive.

PREREQUISITES
  • Understanding of algebraic manipulation and inequalities
  • Familiarity with square roots and their properties
  • Basic knowledge of limits and continuity in calculus
  • Ability to perform mathematical proofs and comparisons
NEXT STEPS
  • Explore advanced algebraic techniques for comparing rational expressions
  • Study the properties of square roots and their applications in inequalities
  • Learn about limits and their role in evaluating expressions as variables approach certain values
  • Investigate mathematical proofs that involve inequalities and their implications
USEFUL FOR

Mathematicians, students studying algebra, educators teaching inequalities, and anyone interested in mathematical proofs and comparisons.

Albert1
Messages
1,221
Reaction score
0
A=$\dfrac {\sqrt {998}+9}{\sqrt{998}+8}$

B=$\dfrac {\sqrt {999}+9}{\sqrt{999}+8}$

Please compare A and B
 
Last edited:
Mathematics news on Phys.org
Albert said:
A=$\dfrac {\sqrt {998}+9}{\sqrt{998}+8}$

B=$\dfrac {\sqrt {999}+9}{\sqrt{999}+8}$

My solution:

If we let $f(x)=\dfrac {\sqrt {x}+9}{\sqrt{x}+8}$, differentiate it w.r.t $x$ we get $f'(x)=\dfrac {-1}{2\sqrt{x}(\sqrt{x}+8)^2}$, i.e. $f'(x)<0$ for all real $x$, or more specifically, $f'(x+1)<f'(x)$ and this implies $f(x)>f(x+1)$, hence, we can say that $A=f(998)=\dfrac {\sqrt {998}+9}{\sqrt{998}+8}>B=f(998+1)=\dfrac {\sqrt {999}+9}{\sqrt{999}+8}$.
 
Albert said:
A=$\dfrac {\sqrt {998}+9}{\sqrt{998}+8}$

B=$\dfrac {\sqrt {999}+9}{\sqrt{999}+8}$

Please compare A and B

$ let \,\,x=998$

$A-B$ = $\dfrac{1}{(\sqrt {x}+8)(\sqrt{x+1}+8\big)}\times \big [(\sqrt{x}+9)(\sqrt{x+1}+8\big)- (\sqrt{x+1}+9)(\sqrt{x}+8\big )\big ]$

=$\dfrac{1}{(\sqrt {x}+8\big)(\sqrt{x+1}+8 \big)}\times (\sqrt {x+1} -\sqrt {x}\big)>0$

$\therefore A>B$
 
Last edited:
Hello, Albert!

$A\:=\:\dfrac{\sqrt {998}+9}{\sqrt{998}+8}$

$B\:=\:\dfrac{\sqrt {999}+9}{\sqrt{999}+8}$

\text{Compare }A\text{ and }B.
Let x = 998

. . . . . . . . . . . . . . . . A \:\gtrless\:B

. . . . . . . . . . . \frac{\sqrt{x}+9}{\sqrt{x}+8} \;\gtrless\;\frac{\sqrt{x+1}+9}{\sqrt{x+1}+8}

\left(\sqrt{x}+9\right)\left(\sqrt{x+1}+8\right) \;\gtrless\;(\sqrt{x}+8)(\sqrt{x+1}+9)

\sqrt{x(x+1)} + 8\sqrt{x} + 9\sqrt{x+1} + 72
. . . . . . . . . . . . \gtrless\:\sqrt{x(x+1)} + 9\sqrt{x} + 8\sqrt{x+1} + 72

. . . . . 8\sqrt{x} + 9\sqrt{x+1} \:\gtrless\:9\sqrt{x} + 8\sqrt{x+1}

. . . . . . . . . . . .\sqrt{x+1} \;{\color{red}&gt;}\; \sqrt{x}

\text{Therefore: }\:A \:&gt;\:B
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
1K