How do we apply the proposition?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Apply
Click For Summary

Discussion Overview

The discussion revolves around the application of a proposition related to subharmonic functions and their harmonic extensions within a specified domain. Participants explore the implications of the maximum principle for subharmonic functions and the conditions under which certain inequalities hold. The scope includes theoretical reasoning and mathematical proofs concerning the behavior of these functions in different regions of a domain.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant states that if the function $w - H_B[w]$ achieves a maximum at an inner point of $B$, it would imply that the function is constant and equal to zero at the boundary, raising questions about the existence of a minimum that could be less than zero.
  • Another participant suggests that an additional inequality may be necessary for $w - H_B[w]$ if the maximum or minimum is not achieved at an internal point.
  • A different participant presents a proof involving the case where $B \cap B_0 = \varnothing$, questioning how the proposition can be applied when the functions $w$ and $H_B[w]$ are harmonic in different spaces.
  • Concerns are raised about the conditions under which $w \leq H_B[w]$ holds, particularly in regions where the two functions are harmonic and their relationship at the boundaries.

Areas of Agreement / Disagreement

Participants express uncertainty regarding the conditions necessary for applying the proposition and whether the maximum principle can be definitively applied in the scenarios discussed. There is no consensus on the implications of the maximum principle or the necessity of additional inequalities.

Contextual Notes

Participants note limitations regarding the assumptions about maximum and minimum points, as well as the dependence on the definitions of the functions involved. The discussion highlights the need for clarity on the relationships between the functions in different regions of the domain.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I am reading the proof that if the function $v$ is subharmonic in $\Omega$ then $ H_{B_0}[v]$ is also subharmonic in $\Omega$.

($B_0 $ is a ball in $\Omega$)

(We say that the function $v$ is subharmonic in $\Omega$ if for every ball $B \subset \Omega$ it holds that $v \leq H_B[v]$.)

$H_B[v]$ is defined as follows:

$$\\v(x) \in C^0(\Omega), B \subset \Omega \text{ arbitrary ball} \\ \\
H_B[v]=\left\{\begin{matrix}
\text{harmonic for } & x \in B\\
v \text{ for } & x \in \Omega \setminus{B}
\end{matrix}\right.$$

We have to show that for each ball $B\subset \Omega $ it holds that $w \leq H_B[w]$ where $w=H_{B_0}[v]$.

So we compare the functions
$ w(x)=\left\{\begin{matrix}
\text{ harmonic} & , x \in B_0\\
v & , x \in \Omega \setminus{B_0}
\end{matrix}\right.$

and$H_B[w](x)=\left\{\begin{matrix}
\text{ harmonic } & , x \in B\\
w & , x \in \Omega \setminus{B}
\end{matrix}\right.$

where $v$ is a subharmonic function.

We distinguish cases.At the case $ B_0 \subset B $:

in $\Omega \setminus{B}$ we have that $ H_B[w]=H_{B_0}[v]$.

In $B$ we have that $H_B[w]$ is harmonic and $w$ is subharmonic (since $w$ is harmonic in $B_0$ and $w=v$ in $B\setminus{B_0}$, so it is subharmonic).

So we have that $ w-H_B[w]$ is subharmonic, and so

$ w-H_B[w]|_{\partial{B}}=0 \Rightarrow w-H_B|_B=0 $

We get this from the proposition $(\star)$.

$(\star)$: The subharmonic in $\Omega$ function does not achieve its maximum in the inner points of $\Omega$ if it is not constant.We apply the proposition for $\Omega=B$. But do we have an inner point of $B$ in which $w-H_B[w]$ achieves its maximum, in order to come to the conclusion that $w-H_B|_B=0 $? (Thinking)
 
Physics news on Phys.org
evinda said:
We apply the proposition for $\Omega=B$. But do we have an inner point of $B$ in which $w-H_B[w]$ achieves its maximum, in order to come to the conclusion that $w-H_B|_B=0 $? (Thinking)

Hey evinda! (Smile)

If there would be a maximum in an inner point of $B$, it follows that $w-H_B[w]$ is constant, and since it's zero at the boundary, that maximum would be $0$.
Still, I don't get it yet, because it seems to me there could still be a minimum that is less than $0$. :confused:
 
In order to apply the proposition don't we need an additional inequality for $w-H_B[w]$ if we are not given that the maximum or minimum is achieved at an internal point? (Sweating)
 
In some other notes, there is the following proof:

  • $B \cap B_0=\varnothing$

    $$H_B[w]|_{\partial{B}}=w|_{\partial{B}} \Rightarrow H_B[w]=w \text{ in } B$$

    (2 harmonic functions are equal at the boundary and so they are equal at the whole space)My question about this: How can we use the proposition above although the functions $w$ and $H_B[w]$ are harmonic in different spaces?
  • $B \subset B_0$: in $\Omega \subset B$ we have $H_B[w]=H_{B_0}[v]$
    in $B$ we have that $H_B[w], H_{B_0}[v]$ are harmonic
    in $\partial{B}$ $H_B[w] \geq H_{B_0}[v]$In this case, I think that we have $H_{B}[w]=w$ in $\partial{\Omega}$. Am I wrong?
  • $B \not\subset B_0$ and $B \cap B_0 \neq \varnothing$

    if $x \in B \setminus{B_0}$ we have that $w=H_{B_0}[v]=v \leq H_B[v] \leq H_B[w]$

    if $x \in B \cap B_0$ we have that $w$ and $H_B[w]$ are harmonic
    in $\partial{B \cap B_0}$ it holds that $w \leq H_B[w] \Rightarrow w \leq H_B[w]$ in $B \cap B_0$Why do we have that in $\partial{B \cap B_0}$ it holds that $w \leq H_B[w] $ ?
  • $x \in \Omega \setminus{ B \cup B_0}$: $w=H_B[w]$

    Do we get this from the definition of $H_B[w]$?
 
I like Serena said:
Hey evinda! (Smile)

If there would be a maximum in an inner point of $B$, it follows that $w-H_B[w]$ is constant, and since it's zero at the boundary, that maximum would be $0$.
Still, I don't get it yet, because it seems to me there could still be a minimum that is less than $0$. :confused:

From the maximum prinviple, we get that either the maximum is achieved at the boundary and so it is equal to $0$ or the function is constant. Right?

So don't we get that $w-H_B[w] \leq 0$? (Thinking)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 27 ·
Replies
27
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 18 ·
Replies
18
Views
4K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K