How Do We Find the Logical Negation of Statements?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the logical negation of quantified statements in mathematical logic. Participants explore the negation of statements involving universal and existential quantifiers, particularly in the context of functions and conditions defined over sets. The scope includes theoretical reasoning and mathematical expressions.

Discussion Character

  • Exploratory
  • Mathematical reasoning

Main Points Raised

  • One participant presents a method to show the negation of "$\forall a \in A \ \exists b \in B \ : \ \alpha (a, b)$" as "$\exists a \in A \ \forall b \in B \ : \ \neg \alpha (a, b)$" and provides a detailed derivation.
  • Another participant agrees with the correctness of the derivation and suggests alternative notational choices for clarity.
  • A different participant questions whether the derived equivalence holds for some or all values of $x$, prompting clarification on the scope of the statements.
  • One participant notes that the equivalence holds for each particular $x$, thus applying to all $x$.
  • There is a discussion about the interpretation of symbols used in the mathematical expressions, specifically the meanings of colons and commas in the context of logical statements.

Areas of Agreement / Disagreement

While there is agreement on the correctness of the negation derivation presented, there remains some uncertainty regarding the interpretation of certain symbols and the application of the derived equivalence to specific cases.

Contextual Notes

Participants express varying interpretations of mathematical notation, particularly regarding the use of colons and commas, which may affect clarity in communication. The discussion does not resolve these notational ambiguities.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :unsure:

It is given that the negation of "$\forall a\in A: \alpha (a)$" is "$\exists a\in A: \neg \alpha (a)$" and the negation of "$\exists b\in B: \beta (b)$" is "$\forall b\in B: \neg \beta (b)$".

I want to show that the negation of "$\forall a \in A \ \exists b \in B \ : \ \alpha (a, b)$" is "$\exists a \in A \ \forall b \in B \ : \ \neg \alpha (a, b)$".

Do we show that as follows? \begin{align*}\neg \left (\forall a \in A \ \exists b \in B \ : \ \alpha (a, b)\right )&\equiv \exists a \in A \ \neg \left ( \exists b \in B \ : \ \alpha (a, b)\right ) \\ & \equiv \exists a \in A \ \forall b \in B \ : \ \neg \alpha (a, b)\end{align*} Let $A\subset \mathbb{R}$ and let $f, g, h:A\rightarrow \mathbb{R}$ be functions.

I want to determine the negation of "$\forall \epsilon>0 \ \exists \alpha ,\beta >0 \ : \ [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon]$".

I have done the following:
\begin{align*}&\neg \left (\forall \epsilon>0 \ \exists \alpha ,\beta >0 \ : \ [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon]\right ) \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ \neg [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon] \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ \neg [\neg \left (x\in A, f(x)\leq \alpha , g(x)\geq \beta\right ) \lor h(x)\leq \epsilon] \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ [\left (x\in A, f(x)\leq \alpha , g(x)\geq \beta\right ) \land h(x)> \epsilon]\end{align*}

Is everything correct?

:unsure:
 
Physics news on Phys.org
Yes, everything is correct. It makes sense to write either only commas or only $\land$ in the last formula.
 
Last edited:
mathmari said:
Hey! :unsure:

It is given that the negation of "$\forall a\in A: \alpha (a)$" is "$\exists a\in A: \neg \alpha (a)$" and the negation of "$\exists b\in B: \beta (b)$" is "$\forall b\in B: \neg \beta (b)$".

I want to show that the negation of "$\forall a \in A \ \exists b \in B \ : \ \alpha (a, b)$" is "$\exists a \in A \ \forall b \in B \ : \ \neg \alpha (a, b)$".

Do we show that as follows? \begin{align*}\neg \left (\forall a \in A \ \exists b \in B \ : \ \alpha (a, b)\right )&\equiv \exists a \in A \ \neg \left ( \exists b \in B \ : \ \alpha (a, b)\right ) \\ & \equiv \exists a \in A \ \forall b \in B \ : \ \neg \alpha (a, b)\end{align*} Let $A\subset \mathbb{R}$ and let $f, g, h:A\rightarrow \mathbb{R}$ be functions.

I want to determine the negation of "$\forall \epsilon>0 \ \exists \alpha ,\beta >0 \ : \ [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon]$".

I have done the following:
\begin{align*}&\neg \left (\forall \epsilon>0 \ \exists \alpha ,\beta >0 \ : \ [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon]\right ) \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ \neg [x\in A, f(x)\leq \alpha , g(x)\geq \beta \Rightarrow h(x)\leq \epsilon] \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ \neg [\neg \left (x\in A, f(x)\leq \alpha , g(x)\geq \beta\right ) \lor h(x)\leq \epsilon] \\ & \equiv \exists \epsilon>0 \ \forall \alpha ,\beta >0 \ : \ [\left (x\in A, f(x)\leq \alpha , g(x)\geq \beta\right ) \land h(x)> \epsilon]\end{align*}

Is everything correct?

:unsure:

Does the above hold for some x or for all x
What do the symbols (:) (,) mean
 
It's a bad idea to overquote. The first part of the quote has nothing to do with $x$.

solakis said:
Does the above hold for some x or for all x
The equivalence holds for each particular $x$, so for all $x$.

solakis said:
What do the symbols :)) (,) mean
I am not sure about the smiley, but comma means conjunction in this context.
 
Sorry i mean ... :
 
In this case colon is just a part of formula syntax: $\forall x:\,A$. There are many variations of this syntax.
 
oh yes $\forall x$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 27 ·
Replies
27
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 8 ·
Replies
8
Views
2K