A How Do We Prove ##L / Z(L)## is Nilpotent in Engel's Theorem?

HDB1
Messages
77
Reaction score
7
in the Proof of Engel's Theorem. (3.3), p. 13:

please, how we get this step:

##L / Z(L)## evidently consists of ad-nilpotent elements and has smaller dimension than ##L##.
Using induction on ##\operatorname{dim} L##, we find that ##L / Z(L)## is nilpotent.

Thanks in advance,
 
Physics news on Phys.org
We know that ##L## consists of ad-nilpotent matrices. (Condition of Engel's theorem.)
This means ##(\operatorname{ad}x)^n=0## for every ##x\in L## and some ##n.##

For the induction step, we need ad-nilpotent matrices of a smaller size.
(i) ##Z(L)\neq 0.## (theorem 3.3)
(ii) Since ##(i)## holds we have ##\dim \left(L/Z(L)\right)<\dim (L)##

(iii) ##L/Z(L)## is ad-nilpotent.
Proof: Take an element ##x+Z(L)\in L/Z(L).## Then ##\operatorname{ad}(x+Z(L))(y+Z(L))=[x,y]+Z(L).## Thus
\begin{align*}
(\operatorname{ad}(x+Z(L)))^n(y)&=[x,[x,[x,[x,[x,\ldots[x,y]\ldots ]]]]]+Z(L)=(\operatorname{ad}_L(x))^n(y)+Z(L)
\end{align*}
Since ##x\in L## is an ad-nilpotent element, we end up with ##(\operatorname{ad}(x+Z(L)))^n(y)=0+Z(L)## if ##n## is only large enough. But that means that ##x+Z(L)\in L/Z(L)## is ad-nilpotent so we can apply the induction hypothesis.

(iv) Induction hypothesis: ##L/Z(L)## is nilpotent.
(v) ##L## is nilpotent by proposition 3.2 (b)
 
Thank you so much, @fresh_42 , :heart: :heart: :heart: :heart:

please, is the opposite direction of Engel's theorem, true? do you have any example of this theorem, please?
 
HDB1 said:
please, is the opposite direction of Engel's theorem, true?
I think so, let's see. Engel says: all ##\operatorname{ad}X## with ##X\in L## nilpotent, then ##L## is nilpotent.

This is definitely the stronger part because it says that from ##[X,[X,[X,\ldots[X,A]\ldots]]]=0## we can conclude that ##[X,[Y,[Z,\ldots[W,A]\ldots]]]=0.## So turning the direction seems to be trivial.

If ##L## is nilpotent and ##X\in L## then ##\{0\}=L^n=[L,[L,[L,\ldots[L,L]\ldots]]]## and in particular ##[X,[X,[X,\ldots[X,A]\ldots]]]=(\operatorname{ad}^n(X))(A)=0## for all ##A\in L.##

You must learn to use the definitions of those terms. Then many answers will come in naturally.

HDB1 said:
do you have any example of this theorem, please?
Consider the Heisenberg algebra ##\left\{\begin{pmatrix}0&a&b\\0&0&c\\0&0&0\end{pmatrix}\right\}.## Set
$$
A=\begin{pmatrix}0&1&0\\0&0&0\\0&0&0\end{pmatrix}\, , \,B=\begin{pmatrix}0&0&1\\0&0&0\\0&0&0\end{pmatrix}\, , \,C=\begin{pmatrix}0&0&0\\0&0&1\\0&0&0\end{pmatrix}
$$
as basis vectors.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top