MHB How do we show that it is finite?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Finite
Click For Summary
The discussion revolves around demonstrating the finiteness of the integral $\int_0^{\ell} \phi^2(x) dx$ for a piecewise continuously differentiable function $\phi$ under homogenous Neumann boundary conditions. Participants clarify that the continuity of $\phi$ on the bounded interval $[0, \ell]$ implies that $\phi$ is bounded, which is crucial for establishing the finiteness of the integral. It is emphasized that knowing the values of $\phi(0)$ and $\phi(\ell)$ is unnecessary, as the existence of these values and the continuity of the function ensure boundedness. The conversation concludes with a consensus on the sufficiency of these conditions to prove the desired result. Understanding these properties is essential for solving the initial and boundary value problem for the heat equation.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

We consider the initial and boundary value problem for the heat equation in a bounded interval $[0, \ell]$ with homogenous Neumann boundary conditions and $k=1$, and we suppose that the initial value $\phi$ is piecewise continuously differentiable and that $\phi'(0)=\phi'(\ell)=0$. I want to show that for the solution holds the following inequality.

$$|u(x,t)-\frac{1}{\ell} \int_0^{\ell} \phi(x) dx| \leq C e^{-\left( \frac{\pi}{\ell}\right)^2 t}, 0 \leq x \leq \ell, t \geq 1$$

where $C$ is a constant that depends on the quantity $\int_0^{\ell} [\phi(x)]^2 dx$.

I have done the following.

Our initial and boundary value problem is the following:

$\left\{\begin{matrix}
u_t=u_{xx}, & 0<x<\ell,t>0,\\
u_x(0,t)=u_x(\ell,t)=0, & t \geq 0,\\
u(x,0)=\phi(x), & 0 \leq x \leq \ell
\end{matrix}\right.$

We know that the solution of the problem is

$$u(x,t)=\frac{a_0}{2}+ \sum_{n=1}^{\infty} a_n e^{-\left( \frac{n \pi}{\ell}\right)^2 t} \cos{\left( \frac{n \pi x}{\ell}\right)}$$

with $a_n=\frac{2}{\ell} \int_0^{\ell} \phi(x) \cos{\left( \frac{n \pi x}{\ell}\right)}dx$ and $\phi(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty} a_n \cos{\left( \frac{n \pi x}{\ell}\right)}$.I have shown that $$\left| u(x,t)-\frac{1}{\ell} \int_0^{\ell} \phi(x) dx\right| \leq e^{-\left( \frac{\pi}{\ell}\right)^2 t} \left( \frac{2}{\ell} \int_0^{\ell} \phi^2(x) dx\right)^{\frac{1}{2}} \left( \sum_{n=1}^{\infty} e^{-2 \left( \frac{\pi}{\ell}\right)^2 (n^2-1)}\right)^{\frac{1}{2}}$$How can we show that $\int_0^{\ell} \phi^2(x) dx<+\infty$ given the information that $\phi'(0)=\phi'(\ell)=0$ and not that $\phi(0)=\phi(\ell)=0$ ?
 
Physics news on Phys.org
evinda said:
We consider the initial and boundary value problem for the heat equation in a bounded interval $[0, \ell]$ with homogenous Neumann boundary conditions and $k=1$, and we suppose that the initial value $\phi$ is piecewise continuously differentiable and that $\phi'(0)=\phi'(\ell)=0$.

How can we show that $\int_0^{\ell} \phi^2(x) dx<+\infty$ given the information that $\phi'(0)=\phi'(\ell)=0$ and not that $\phi(0)=\phi(\ell)=0$ ?

Hey evinda!

As $\phi$ is continuous on the bounded interval $[0,\ell]$, doesn't that imply that $\phi$ is bounded? (Wondering)

Suppose $|\phi(x)|<M$ on the interval.
Doesn't that imply that $\left|\int_0^\ell \phi^2(x)\,dx\right| < M^2 \ell < +\infty$? (Wondering)
 
I like Serena said:
Hey evinda!

As $\phi$ is continuous on the bounded interval $[0,\ell]$, doesn't that imply that $\phi$ is bounded? (Wondering)

So don't we need to know anything about $\phi(0)$ and $\phi(\ell)$ , in order to deduce that $\phi$ is bounded? (Thinking)
 
evinda said:
So don't we need to know anything about $\phi(0)$ and $\phi(\ell)$ , in order to deduce that $\phi$ is bounded?

No. It suffices that they exist, which is implied by the fact that $\phi$ is a function on a closed interval.
And its continuity implies that the function is bounded on the interval itself. (Nerd)
 
I like Serena said:
No. It suffices that they exist, which is implied by the fact that $\phi$ is a function on a closed interval.
And its continuity implies that the function is bounded on the interval itself. (Nerd)

Ah I see... thank you! (Smile)
 

Similar threads

Replies
1
Views
1K
Replies
3
Views
438
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K