How do we show that it is finite?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Finite
Click For Summary
SUMMARY

The discussion focuses on proving the finiteness of the integral $\int_0^{\ell} \phi^2(x) dx$ for the heat equation defined on a bounded interval $[0, \ell]$ with homogenous Neumann boundary conditions. The participants establish that the continuity of the initial value function $\phi$, along with the conditions $\phi'(0)=\phi'(\ell)=0$, guarantees that $\phi$ is bounded on the interval. Consequently, this boundedness implies that the integral is finite, as demonstrated by the inequality $\left|\int_0^\ell \phi^2(x)\,dx\right| < M^2 \ell < +\infty$.

PREREQUISITES
  • Understanding of the heat equation and its boundary conditions.
  • Familiarity with concepts of continuity and bounded functions in real analysis.
  • Knowledge of integral calculus, specifically properties of definite integrals.
  • Basic understanding of Fourier series and their applications in solving differential equations.
NEXT STEPS
  • Study the properties of the heat equation with various boundary conditions.
  • Learn about the implications of continuity on boundedness in real analysis.
  • Explore the application of Fourier series in solving initial and boundary value problems.
  • Investigate the convergence of series and integrals in the context of functional analysis.
USEFUL FOR

Mathematicians, physicists, and engineers working with differential equations, particularly those involved in heat transfer analysis and boundary value problems.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

We consider the initial and boundary value problem for the heat equation in a bounded interval $[0, \ell]$ with homogenous Neumann boundary conditions and $k=1$, and we suppose that the initial value $\phi$ is piecewise continuously differentiable and that $\phi'(0)=\phi'(\ell)=0$. I want to show that for the solution holds the following inequality.

$$|u(x,t)-\frac{1}{\ell} \int_0^{\ell} \phi(x) dx| \leq C e^{-\left( \frac{\pi}{\ell}\right)^2 t}, 0 \leq x \leq \ell, t \geq 1$$

where $C$ is a constant that depends on the quantity $\int_0^{\ell} [\phi(x)]^2 dx$.

I have done the following.

Our initial and boundary value problem is the following:

$\left\{\begin{matrix}
u_t=u_{xx}, & 0<x<\ell,t>0,\\
u_x(0,t)=u_x(\ell,t)=0, & t \geq 0,\\
u(x,0)=\phi(x), & 0 \leq x \leq \ell
\end{matrix}\right.$

We know that the solution of the problem is

$$u(x,t)=\frac{a_0}{2}+ \sum_{n=1}^{\infty} a_n e^{-\left( \frac{n \pi}{\ell}\right)^2 t} \cos{\left( \frac{n \pi x}{\ell}\right)}$$

with $a_n=\frac{2}{\ell} \int_0^{\ell} \phi(x) \cos{\left( \frac{n \pi x}{\ell}\right)}dx$ and $\phi(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty} a_n \cos{\left( \frac{n \pi x}{\ell}\right)}$.I have shown that $$\left| u(x,t)-\frac{1}{\ell} \int_0^{\ell} \phi(x) dx\right| \leq e^{-\left( \frac{\pi}{\ell}\right)^2 t} \left( \frac{2}{\ell} \int_0^{\ell} \phi^2(x) dx\right)^{\frac{1}{2}} \left( \sum_{n=1}^{\infty} e^{-2 \left( \frac{\pi}{\ell}\right)^2 (n^2-1)}\right)^{\frac{1}{2}}$$How can we show that $\int_0^{\ell} \phi^2(x) dx<+\infty$ given the information that $\phi'(0)=\phi'(\ell)=0$ and not that $\phi(0)=\phi(\ell)=0$ ?
 
Physics news on Phys.org
evinda said:
We consider the initial and boundary value problem for the heat equation in a bounded interval $[0, \ell]$ with homogenous Neumann boundary conditions and $k=1$, and we suppose that the initial value $\phi$ is piecewise continuously differentiable and that $\phi'(0)=\phi'(\ell)=0$.

How can we show that $\int_0^{\ell} \phi^2(x) dx<+\infty$ given the information that $\phi'(0)=\phi'(\ell)=0$ and not that $\phi(0)=\phi(\ell)=0$ ?

Hey evinda!

As $\phi$ is continuous on the bounded interval $[0,\ell]$, doesn't that imply that $\phi$ is bounded? (Wondering)

Suppose $|\phi(x)|<M$ on the interval.
Doesn't that imply that $\left|\int_0^\ell \phi^2(x)\,dx\right| < M^2 \ell < +\infty$? (Wondering)
 
I like Serena said:
Hey evinda!

As $\phi$ is continuous on the bounded interval $[0,\ell]$, doesn't that imply that $\phi$ is bounded? (Wondering)

So don't we need to know anything about $\phi(0)$ and $\phi(\ell)$ , in order to deduce that $\phi$ is bounded? (Thinking)
 
evinda said:
So don't we need to know anything about $\phi(0)$ and $\phi(\ell)$ , in order to deduce that $\phi$ is bounded?

No. It suffices that they exist, which is implied by the fact that $\phi$ is a function on a closed interval.
And its continuity implies that the function is bounded on the interval itself. (Nerd)
 
I like Serena said:
No. It suffices that they exist, which is implied by the fact that $\phi$ is a function on a closed interval.
And its continuity implies that the function is bounded on the interval itself. (Nerd)

Ah I see... thank you! (Smile)
 

Similar threads

Replies
1
Views
1K
Replies
3
Views
585
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K