- #1

etotheipi

- Homework Statement
- Find the 4-acceleration of a particle at rest on the surface of a non-rotating planet of mass ##M##

- Relevant Equations
- N/A

I'd just like a bit of guidance here, because I'm not sure if what I'm doing is correct. First, the equation of the motion,$$A^{\mu} = \frac{dU^{\mu}}{d\tau} + \Gamma^{\mu}_{\sigma \rho} U^{\sigma}U^{\rho}$$I decided to use the Schwarzschild coordinates ##(t,r,\theta, \phi)##, and in these coordinates I can take ##U^r = U^{\theta} = U^{\phi} = 0##. Since the coordinate acceleration is zero we get$$A^{\mu} = \Gamma^{\mu}_{tt} U^t U^t$$The relevant Christoffel symbol$$\Gamma^{\mu}_{tt} = \frac{1}{2} g^{\mu m} \left( \frac{\partial g_{mt}}{\partial x^t} + \frac{\partial g_{mt}}{\partial x^t} - \frac{\partial g_{tt}}{\partial x^m} \right) = - \frac{1}{2} g^{\mu r} \frac{\partial g_{tt}}{\partial r}$$where I used that the metric is time-independent and that ##g_{tt}## depends only on ##r##, i.e.$$g_{tt} = - \left(1- \frac{2GM}{r} \right) \iff \frac{\partial g_{tt}}{\partial r} = - \frac{2GM}{r^2}$$and so$$A^{\mu} = g^{\mu r} \frac{GM}{r^2}$$So for instance, if ##\mu = r##, we get$$g^{rr} = \left(\frac{2GM}{r} - 1 \right)^{-1} = - \left( 1 + \frac{2GM}{r} \right) + \mathcal{O}(r^{-2})$$and then$$A^{\mu} = - \left( 1 + \frac{2GM}{r} \right) \cdot \frac{GM}{r^2} = - \frac{GM}{r^2} + \mathcal{O}(r^{-3})$$I wondered, why did I get a minus sign? I expected the four-acceleration to have a positive radial component. I wonder if I've mixed up the metric signature somewhere, but don't know where. thanks!