MHB How Do You Calculate P(A∩B) in Probability Theory?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Probability
AI Thread Summary
To calculate P(A∩B) in probability theory, the formula P(A∪B) = P(A) + P(B) - P(A∩B) is used. By rearranging this formula, P(A∩B) can be isolated as P(A∩B) = P(A) + P(B) - P(A∪B). In the given example, substituting the values leads to P(A∩B) = 1 - 0.6 - 0.8, resulting in a negative probability, indicating a mistake in the values used. Additionally, the discussion touches on De Morgan's laws, which relate the complements of unions and intersections, helping to clarify the notation and calculations involved. Understanding these concepts is crucial for accurate probability calculations.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 1135
this is an image of the problem as given, mostly to avoid typo's, but (b) seems to contain a notation that I don't recognize.

well for $$(a)$$ find $$p(A\cap B)$$

from the counting Formula:
$$n(A\cup B)=n(A)+n(B)-n(A\cap B)$$

replacing $n$ for $p$ and isolating $$p(A\cap B)$$
$$p(A\cup B)-p(A)-p(B)=p(A\cap B)$$
so..
$1-0.6-0.8=-0.4=p(A\cap B)$

(b) ?
 
Mathematics news on Phys.org
Hi karush,

For (a) you have the right idea but mixed up your signs a bit.

$P[A \cup B]=P[A]+P-P[A \cap B]$. We want to solve for $P[A \cap B]$.

$P[A \cap B]=P[A]+P-P[A \cup B]$.

Can you solve it from there?

(b) I'm going to guess that the "C" means "compliment". Normally we write this as $P[A' \cup B']$ or $P[A^c \cup B^c]$. There are some special and useful rules, called De Morgan's laws, that allow us to manipulate expressions like this. Have you seen these before?
 
$$P[A \cap B]=P[A]+P-P[A \cup B]$$

$$0.4=0.6+0.8-1$$

i am am looking at De Morgan's laws it new to me...

I did see this

https://www.physicsforums.com/attachments/1136
 
Exactly! :)

Notice that $P[A' \cup B']=P[A \cap B]'=1-P[A \cap B]$ and you'll be done.
 
Jameson said:
Exactly! :)

Notice that $P[A' \cup B']=P[A \cap B]'=1-P[A \cap B]$ and you'll be done.

$$P[A' \cup B']=P[A \cap B]'=1-P[A \cap B]$$
$$

0.6=1-0.4$$

really that it!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top