MHB How Do You Calculate Permutations of Repeated Letters?

nickar1172
Messages
20
Reaction score
0
Reviewing for finals and got this question wrong:

How many different permutations are there of the letters in the word LOLLIPOP

what I did was 8P8, how would you solve this?
 
Mathematics news on Phys.org
The number of ways to order or arrange $n$ objects is $n!$. So, we want to look at the number of ways to order 8 letters, however, there are 3 L's, 2 O's and 2 P's. Hence, you want to take the total number of ways to arrange 8 letters, and then account for the fact that some of them are identical. Can you state how many would be identical?

edit: I have removed the [SOLVED] label from the title so that our readers don't skip the thread thinking you have already found the solution yet.
 
so it would be 8P8/2!3!2! = 1680?
 
Yes, although I would simply write:

$$N=\frac{8!}{3!2!2!}=8\cdot7\cdot6\cdot5=1680$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top