How Do You Calculate the Electric Potential of an Ellipsoid?

  • Thread starter Thread starter Amit Kumar Basistha
  • Start date Start date
  • Tags Tags
    Ellipse
Click For Summary

Homework Help Overview

The discussion revolves around calculating the electric potential of an ellipsoid, with participants exploring the complexities of the problem and the implications of distance in relation to the ellipsoid's shape.

Discussion Character

  • Exploratory, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • Participants discuss parametrizing the ellipsoid and transforming coordinates to simplify calculations. There is also consideration of the implications of distance when approximating the potential, with questions about the relevance of the ellipsoid's shape at varying distances.

Discussion Status

The discussion is ongoing, with participants offering insights into the challenges of the calculations and questioning the assumptions regarding distance and the ellipsoid's characteristics. No consensus has been reached, and various interpretations of the problem are being explored.

Contextual Notes

Participants note that the problem was assigned by a professor, with a prior requirement to solve a similar problem for a sphere, indicating a comparative approach to the ellipsoid case.

Amit Kumar Basistha
Messages
3
Reaction score
0
Homework Statement
Recently I came across the following problem:

Suppose ##\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1## is an ellipse with surface charge density ##\sigma=\sigma_0\sin(\theta)\cos(\phi)## where ##\theta## is the angle with the ##z-## axis and ##\phi## is with the ##x-## axis. Find the potential and multipole moments at a point far away from the ellipse.
Relevant Equations
Maxwell's Equations
Spherical Harmonics
My initial idea was to first parametrize the ellipse as ##(a\sin(\theta')\cos(\phi'),b\sin(\theta')\sin(\phi'),c\cos(\theta'))## and then calculate ##\theta,\phi## in terms of these coordinates. I then did the coordinate transform ##x\to\frac{x}{a},y\to\frac{y}{b},z\to\frac{z}{c}## to convert it to the sphere case where you can find the potential and multipole moments using spherical harmonics. But the whole calculation is messy because you have to find the fundamental vector product and all those stuff for the coordinate change and the expression for the angles in terms of these coordinates.
 
Last edited:
Physics news on Phys.org
I think you need to consider how far is "far away". This looks like it needs an approximation. What does an elliptical (American) football look like next to a spherical (rest-of-the-world) football from 100 m away?
 
My understanding why the question mentions far away is because if the point is near the surface of the ellipsoid then there might be issues with the spherical harmonics expansion as the radius of the ellipsoid is not uniform. So, far away means you can safely assume that it's distance from the origin (Center of the Ellipsoid) is more that the distance of any point on the surface of the Ellipsoid from the origin
 
In this kind of problem, you have a point of observation at ##\vec r## from the origin and a charges at ##\vec r^{~'}##. At least to me (and I've been wrong before), "far away" usually means ##|\vec r|>>|\vec r^{~'}|## which in this case would translate to ##|\vec r|>>a,b,c.## However, if that is the case, why mention the ellipsoid? Do you have a reference where you found this problem? You just may have to put up with the messy calculation.
 
No I don't have a reference. Our Prof asked us to solve the problem in the case of the sphere and then asked us as a separate question to do it for the Ellipsoid
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
26
Views
6K