How Do You Calculate the Electric Potential of an Ellipsoid?

  • Thread starter Thread starter Amit Kumar Basistha
  • Start date Start date
  • Tags Tags
    Ellipse
Amit Kumar Basistha
Messages
3
Reaction score
0
Homework Statement
Recently I came across the following problem:

Suppose ##\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1## is an ellipse with surface charge density ##\sigma=\sigma_0\sin(\theta)\cos(\phi)## where ##\theta## is the angle with the ##z-## axis and ##\phi## is with the ##x-## axis. Find the potential and multipole moments at a point far away from the ellipse.
Relevant Equations
Maxwell's Equations
Spherical Harmonics
My initial idea was to first parametrize the ellipse as ##(a\sin(\theta')\cos(\phi'),b\sin(\theta')\sin(\phi'),c\cos(\theta'))## and then calculate ##\theta,\phi## in terms of these coordinates. I then did the coordinate transform ##x\to\frac{x}{a},y\to\frac{y}{b},z\to\frac{z}{c}## to convert it to the sphere case where you can find the potential and multipole moments using spherical harmonics. But the whole calculation is messy because you have to find the fundamental vector product and all those stuff for the coordinate change and the expression for the angles in terms of these coordinates.
 
Last edited:
Physics news on Phys.org
I think you need to consider how far is "far away". This looks like it needs an approximation. What does an elliptical (American) football look like next to a spherical (rest-of-the-world) football from 100 m away?
 
My understanding why the question mentions far away is because if the point is near the surface of the ellipsoid then there might be issues with the spherical harmonics expansion as the radius of the ellipsoid is not uniform. So, far away means you can safely assume that it's distance from the origin (Center of the Ellipsoid) is more that the distance of any point on the surface of the Ellipsoid from the origin
 
In this kind of problem, you have a point of observation at ##\vec r## from the origin and a charges at ##\vec r^{~'}##. At least to me (and I've been wrong before), "far away" usually means ##|\vec r|>>|\vec r^{~'}|## which in this case would translate to ##|\vec r|>>a,b,c.## However, if that is the case, why mention the ellipsoid? Do you have a reference where you found this problem? You just may have to put up with the messy calculation.
 
No I don't have a reference. Our Prof asked us to solve the problem in the case of the sphere and then asked us as a separate question to do it for the Ellipsoid
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top