MHB How Do You Calculate the Probability in an Exponential Distribution?

AI Thread Summary
To calculate the probability for a random variable Y with an EXP(2) distribution, the cumulative distribution function (CDF) can be used. The CDF is defined as P[X ≤ x] = 1 - e^(-λx). For P(Y > 1), the calculation involves finding P(Y ≤ 1) first, which is 1 - e^(-2*1), resulting in approximately 0.8467. Consequently, P(Y > 1) is calculated as 1 - 0.8467, yielding a final probability of about 0.1353. This method effectively demonstrates the application of the CDF in determining probabilities in exponential distributions.
das1
Messages
40
Reaction score
0
Help?

Suppose the random variable Y has an EXP(2) distribution. What is P(Y > 1)? (Round to four decimal places as appropriate.)
 
Mathematics news on Phys.org
das said:
Help?

Suppose the random variable Y has an EXP(2) distribution. What is P(Y > 1)? (Round to four decimal places as appropriate.)

Are you allowed to use the CDF for this distribution or should you calculate this purely from the pdf? Either way you'll need to also use this fact: $$P[Y>2]=1-P[Y \le 2]$$
 
I don't think there are any restrictions on what functions I can or can't use
 
das said:
I don't think there are any restrictions on what functions I can or can't use

Ok, then this should be very useful. For the exponential distribution, the CDF is the following: $$P[X \le x]=1-e^{-\lambda x}$$. How can you use this to answer your question?
 
So would I plug in 1 for x and 2 for λ?
Then we would get 1-e^(-2*1)? Which is .8467 but we'd actually want 1-.8467 again because we're looking for P(Y > 1) right? So about .1353?
 
That looks good to me! (Yes)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top