B How Do You Derive the Formula for sin(x-y)?

AI Thread Summary
The discussion focuses on deriving the formula for sin(x-y) using trigonometric identities and Pythagorean theorem. The initial derivation leads to the expression sin^2(x-y) and explores the relationship with cos(x-y). A key point of confusion arises regarding the correct formulation of sin(x-y), with two potential expressions being considered. The conversation suggests that familiarity with Euler's formula can simplify the process of proving these identities. Ultimately, the participants emphasize the importance of understanding these foundational concepts for solving related problems more effectively.
farfromdaijoubu
Messages
8
Reaction score
2
TL;DR Summary
In trying to derive the compound angle formula for sin(x-y), I ended up with two possible solutions from the quadratic. How do I know which solution to take?
I was trying to show that ##sin(x-y) = sin(x)cos(y)-cos(x)sin(y)## using Pythagoras' theorem and ##cos(x-y)=cos(x)cos(y)+sin(x)sin(y)##.

I have:
$$sin^2(x-y)=1-cos^2(x-y)$$
$$sin^2(x-y)=1-(cos(x)cos(y)+sin(x)sin(y))^2$$
$$sin^2(x-y)=1-(cos^2(x)cos^2(y)+sin^2(x)sin^2(y)+2cos(x)cos(y)sin(x)sin(y))$$
$$sin^2(x-y)=1-(cos^2(x)(1-sin^2(y))+sin^2(x)(1-cos^2(y))+2cos(x)cos(y)sin(x)sin(y))$$
$$sin^2(x-y)=(cos^2(x)sin^2(y)+sin^2(x)cos^2(y)-2cos(x)cos(y)sin(x)sin(y))$$
$$sin^2(x-y)=(cos(x)sin(y)-sin(x)cos(y))^2$$

But now how do you know if it's ##sin(x-y)=cos(x)sin(y)-sin(x)cos(y)## or ##sin(x-y)=sin(x)cos(y)-cos(x)sin(y)##?
 
Mathematics news on Phys.org
For y=0
The first one says
\sin x=-\sin x
The senond one says
\sin x=\sin x
 
  • Like
Likes SammyS and PeroK
You could note that$$\sin(x-y) = \cos(x-y -\frac{\pi}2)$$Then apply the cosine result to the right-hand side.
 
FYI, you will be able to solve these problems much more methodically if you are familiar with Euler's formula, ##e^{ix}=\cos(x)+i\sin(x)##, and the associated identities, ##\sin(x) = (e^{ix}-e^{-ix})/2i## and ##\cos(x) = (e^{ix}+e^{-ix})/2##.

PS. I can not see your profile, so I do not know if your mathematical background should have already covered these identities.
 
FactChecker said:
FYI, you will be able to solve these problems much more methodically if you are familiar with Euler's formula, ##e^{ix}=\cos(x)+i\sin(x)##, and the associated identities, ##\sin(x) = (e^{ix}-e^{-ix})/2i## and ##\cos(x) = (e^{ix}+e^{-ix})/2##.

PS. I can not see your profile, so I do not know if your mathematical background should have already covered these identities.
There are more direct way. I am unable to remember those formulae and I'm using the following way to prove/remember pairs of them, each time I need them.
$$\begin{align}
\cos(x-y)+i\sin(x-y)&=e^{i(x-y)}\nonumber \\
&=e^{ix-iy}\nonumber \\
&=e^{ix} \cdot e^{-iy}\nonumber \\
&=e^{ix} \cdot e^{i(-y)}\nonumber \\
&=\left[\cos(x)+i\sin(x)\right]\cdot\left[\cos(-y)+i\sin(-y)\right]\nonumber \\
\end{align}$$
Using parity of sine and cosine functions and multiplication at the end, pairs of the required formulas are obtained.
 
Last edited:
  • Like
Likes FactChecker
Bosko said:
There are more direct way. I am unable to remember those formulae and I'm using the following way to prove/remember pairs of them, each time I need them.
$$\begin{align}
\cos(x-y)+i\sin(x-y)&=e^{i(x-y)}\nonumber \\
&=e^{ix-iy}\nonumber \\
&=e^{ix} \cdot e^{-iy}\nonumber \\
&=e^{ix} \cdot e^{i(-y)}\nonumber \\
&=\left[\cos(x)+i\sin(x)\right]\cdot\left[\cos(-y)+i\sin(-y)\right]\nonumber \\
\end{align}$$
Using the parity of sine and cosine and multiplication at the end, pairs of the required formulas are obtained.
Very good. As I wrote my post, I kept thinking that it there was a better way but I couldn't remember it.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top