How Do You Determine the Direction for a Specific Directional Derivative Value?

  • Context: MHB 
  • Thread starter Thread starter Joe20
  • Start date Start date
  • Tags Tags
    Derivatives
Click For Summary
SUMMARY

The discussion focuses on determining the direction for a specific directional derivative value of the function f(x,y) = x^2 + xy^3 at the point (2,1). The gradient vector at this point is calculated as <5,6>. To find the direction where the directional derivative equals 2, the equation 5a + 6b = 2 is established. A more effective approach is suggested, using the unit vector representation , leading to the trigonometric equation 5cos(θ) + 6sin(θ) = 2, which can be solved using R-formulae for angle θ.

PREREQUISITES
  • Understanding of directional derivatives in multivariable calculus
  • Knowledge of gradient vectors and their properties
  • Familiarity with trigonometric equations and unit vectors
  • Ability to apply R-formulae for solving trigonometric equations
NEXT STEPS
  • Study the concept of directional derivatives in depth
  • Learn how to compute gradient vectors for various functions
  • Explore solving trigonometric equations using R-formulae
  • Investigate the implications of unit vectors in directional analysis
USEFUL FOR

Students and professionals in mathematics, particularly those studying multivariable calculus, as well as educators looking to enhance their understanding of directional derivatives and gradient vectors.

Joe20
Messages
53
Reaction score
1
Find the directions in which the directional derivative of f(x,y) = x^2+ xy^3 at the point (2,1) has the value of 2.

What I have done so far which I am not sure how to continue:

partial derivative of fx = 2x + y^3 and fy = 3xy^2

gradient vector, <fx,fy> at (2,1) = <5,6>

Let u = <a,b>

Directional derivative at (2,1) = gradient vector at (2,1) . u => <5,6> . <a, b> = 5a+6b = 2

Hope someone can advise. Thanks.
 
Physics news on Phys.org
Alexis87 said:
Find the directions in which the directional derivative of f(x,y) = x^2+ xy^3 at the point (2,1) has the value of 2.

What I have done so far which I am not sure how to continue:

partial derivative of fx = 2x + y^3 and fy = 3xy^2

gradient vector, <fx,fy> at (2,1) = <5,6>

Let u = <a,b>

Directional derivative at (2,1) = gradient vector at (2,1) . u => <5,6> . <a, b> = 5a+6b = 2

Hope someone can advise. Thanks.
Instead of taking $\mathbf{u} = \langle a,b\rangle$, it might be better to take $\mathbf{u} = \langle \cos\theta,\sin\theta\rangle$, so that $\mathbf{u}$ is a unit vector making an angle $\theta$ with the $x$-axis. The equation then becomes $5\cos\theta + 6\sin\theta = 2.$ Do you know how to solve that sort of trigonometric equation?
 
Opalg said:
Instead of taking $\mathbf{u} = \langle a,b\rangle$, it might be better to take $\mathbf{u} = \langle \cos\theta,\sin\theta\rangle$, so that $\mathbf{u}$ is a unit vector making an angle $\theta$ with the $x$-axis. The equation then becomes $5\cos\theta + 6\sin\theta = 2.$ Do you know how to solve that sort of trigonometric equation?
May I ask why are we using cosine teta and sine teta? Yes , using R-formulae to solve for the teta.
 
Alexis87 said:
May I ask why are we using cosine teta and sine teta? Yes , using R-formulae to solve for the teta.
Opalg told you that: u is a unit vector making an angle θ with the x-axis. The problem asked for the direction and giving that angle is a good way to designate the x- direction.

The only difficulty with your method is that there are an infinite number of vectors pointing in a given direction, all with different lengths. When you took such a vector to be <a, b> you arrived at the equation 5a+ 6b= 2, a single equation in two variables. Given different values for a, b, satisfying that equation you get different vectors, of different lengths, all pointing in the same direction. If you want a single vector as answer, you have to impose some other condition. If you require that the vector be of unit length, that a^2+ b^2= 1, then you will have two equations in a and b and will get opalg's answer. But you could also simply require that a, the x-component of the vector be equal to -2 and have the equation 5(-2)+ 6b= -10+ 6b= 2 and have 6b= 10= 2= 12 so b= 2. The vector <-2, 2> is a vector in the correct direction.
 

Similar threads

Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K