MHB How do you determine the restrictions of an identity?

  • Thread starter Thread starter eleventhxhour
  • Start date Start date
  • Tags Tags
    Identity
eleventhxhour
Messages
73
Reaction score
0
So, this question says "prove each identity. State any restrictions on the variables".

5a) $$\frac{sinx}{tanx} = cosx$$

I did the first part of the question correctly (proving it), but I don't understand how you determine the restrictions on the variables. In the textbook, it says that it cannot be 0°, 90°, 180°, 270°, and 360°. Could someone explain how they got that?

Thanks!
 
Mathematics news on Phys.org
We cannot have division by zero, so we know:

$$\tan(x)\ne0$$

And because $$\tan(x)\equiv\frac{\sin(x)}{\cos(x)}\implies\sin(x)\ne0$$

We also have:

$$\cos(x)\ne0$$
 
MarkFL said:
We cannot have division by zero, so we know:

$$\tan(x)\ne0$$

And because $$\tan(x)\equiv\frac{\sin(x)}{\cos(x)}\implies\sin(x)\ne0$$

We also have:

$$\cos(x)\ne0$$

Okay, so that gets you that it cannot = 0° and 90°. But how did they get that it cannot be 180°, 270°, and 360°?
 
What are:

$$\sin\left(180^{\circ}\right)$$

$$\cos\left(270^{\circ}\right)$$

$$\sin\left(360^{\circ}\right)$$
 
MarkFL said:
What are:

$$\sin\left(180^{\circ}\right)$$

$$\cos\left(270^{\circ}\right)$$

$$\sin\left(360^{\circ}\right)$$

They all equal 0
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top