MHB How do you determine the restrictions of an identity?

  • Thread starter Thread starter eleventhxhour
  • Start date Start date
  • Tags Tags
    Identity
Click For Summary
To determine the restrictions of the identity $$\frac{sinx}{tanx} = cosx$$, it is crucial to avoid division by zero. The restrictions arise from the conditions that $$\tan(x) \neq 0$$, $$\sin(x) \neq 0$$, and $$\cos(x) \neq 0$$. This leads to the angles 0°, 90°, 180°, 270°, and 360° being excluded, as these values result in sine or cosine equating to zero. Specifically, at 180° and 360°, sine equals zero, while at 90° and 270°, cosine equals zero. Understanding these trigonometric values clarifies the restrictions on the variables in the identity.
eleventhxhour
Messages
73
Reaction score
0
So, this question says "prove each identity. State any restrictions on the variables".

5a) $$\frac{sinx}{tanx} = cosx$$

I did the first part of the question correctly (proving it), but I don't understand how you determine the restrictions on the variables. In the textbook, it says that it cannot be 0°, 90°, 180°, 270°, and 360°. Could someone explain how they got that?

Thanks!
 
Mathematics news on Phys.org
We cannot have division by zero, so we know:

$$\tan(x)\ne0$$

And because $$\tan(x)\equiv\frac{\sin(x)}{\cos(x)}\implies\sin(x)\ne0$$

We also have:

$$\cos(x)\ne0$$
 
MarkFL said:
We cannot have division by zero, so we know:

$$\tan(x)\ne0$$

And because $$\tan(x)\equiv\frac{\sin(x)}{\cos(x)}\implies\sin(x)\ne0$$

We also have:

$$\cos(x)\ne0$$

Okay, so that gets you that it cannot = 0° and 90°. But how did they get that it cannot be 180°, 270°, and 360°?
 
What are:

$$\sin\left(180^{\circ}\right)$$

$$\cos\left(270^{\circ}\right)$$

$$\sin\left(360^{\circ}\right)$$
 
MarkFL said:
What are:

$$\sin\left(180^{\circ}\right)$$

$$\cos\left(270^{\circ}\right)$$

$$\sin\left(360^{\circ}\right)$$

They all equal 0
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
4
Views
9K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
10K