MHB How Do You Differentiate $\frac{x \sqrt{x^2+1}}{(x+1)^{2/3}}$?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
The discussion focuses on finding the derivative of the function y = (x √(x² + 1)) / (x + 1)^(2/3). Participants suggest using logarithmic differentiation and implicit differentiation, leading to a derived expression for dy/dx. The derivative is expressed in terms of x, incorporating the product and quotient rules, with specific calculations for f' and g'. The final result simplifies to a form that combines terms involving x and the original function y. The conversation emphasizes clarity in deriving the second term and ensuring all components are accounted for in the final derivative expression.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242.2q.3}$
$\textsf{find the derivative}\\$
\begin{align}
\displaystyle
y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
\ln{y}&=\ln x
+ \frac{1}{2}\ln(x^2+1)
- \frac{2}{3}\ln(x+1)\\
\end{align}

$\textit{thot this would help but what next??}$
 
Physics news on Phys.org
Use implicit differentiation, knowing that $\d{}{x}\ln\left({x}\right)=\frac{1}{x}$ and $\d{}{x}\ln\left({y}\right)=\frac{1}{y}\d{y}{x}$.
 
$\tiny{242.2q.3}$
$\textsf{find the derivative}\\$
\begin{align}
\displaystyle
y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
\ln{y}&=\ln x
+ \frac{1}{2}\ln(x^2+1)
- \frac{2}{3}\ln(x+1)\\
\frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
\d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
\end{align}
 
Last edited:
$\displaystyle{y=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}}}$

Let $f=x \, \sqrt[]{x^2+1}$ and $g=(x+1)^{2/3}$.

Then $\displaystyle{y'=\frac{f'\cdot g-f\cdot g'}{g^2}} \ \ \ (\star)$

We have the following:
\begin{align*}f' & =(x)' \, \sqrt[]{x^2+1}+x \, (\sqrt[]{x^2+1})'= \sqrt[]{x^2+1}+x \, \frac{1}{2\sqrt[]{x^2+1}}\cdot (x^2+1)' =\sqrt[]{x^2+1}+x \, \frac{2x}{2\sqrt[]{x^2+1}} \\ &=\sqrt[]{x^2+1}+ \, \frac{x^2}{\sqrt[]{x^2+1}} =\frac{\sqrt[]{x^2+1}^2+x^2}{\sqrt[]{x^2+1}}=\frac{x^2+1+x^2}{\sqrt[]{x^2+1}}\\ &=\frac{2x^2+1}{\sqrt[]{x^2+1}}\end{align*}

$$g'=\frac{2}{3}(x+1)^{2/3-1}=\frac{2}{3}(x+1)^{-1/3}$$

$$g^2=(x+1)^{4/3}$$

So, substituting these at the relation $(\star)$ we get:
\begin{align*}y' &=\frac{\frac{2x^2+1}{\sqrt[]{x^2+1}}\cdot (x+1)^{2/3}-x \, \sqrt[]{x^2+1}\cdot \frac{2}{3}(x+1)^{-1/3}}{(x+1)^{4/3}} \\ &=\frac{\sqrt{x^2+1}\left (\frac{2x^2+1}{\sqrt[]{x^2+1}}\cdot (x+1)^{2/3}-x \, \sqrt[]{x^2+1}\cdot \frac{2}{3}(x+1)^{-1/3}\right )}{(x+1)^{4/3}\sqrt{x^2+1}} \\ &=\frac{\left (2x^2+1\right )\cdot (x+1)^{2/3}-x \, (x^2+1)\cdot \frac{2}{3}(x+1)^{-1/3}}{(x+1)^{4/3}\sqrt{x^2+1}} \\ &=\frac{(x+1)^{1/3}\left (\left (2x^2+1\right )\cdot (x+1)^{2/3}-x \, (x^2+1)\cdot \frac{2}{3}(x+1)^{-1/3}\right )}{(x+1)^{1/3}(x+1)^{4/3}\sqrt{x^2+1}} \\ &=\frac{\left (2x^2+1\right )\cdot (x+1)-x \, (x^2+1)\cdot \frac{2}{3}}{(x+1)^{5/3}\sqrt{x^2+1}} \\ & =\frac{3\left (\left (2x^2+1\right )\cdot (x+1)-x \, (x^2+1)\cdot \frac{2}{3}\right )}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{3\left (2x^2+1\right )\cdot (x+1)-2x \, (x^2+1)}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{3\left (2x^3+x+2x^2+1\right )-2 \, (x^3+x)}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{6x^3+3x+6x^2+3-2x^3-2x}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{4x^3+6x^2+x+3}{3(x+1)^{5/3}\sqrt{x^2+1}}\end{align*}
 
karush said:
$\tiny{242.2q.3}$
$\textsf{find the derivative}\\$
\begin{align}
\displaystyle
y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
\ln{y}&=\ln x
+ \frac{1}{2}\ln(x^2+1)
- \frac{2}{3}\ln(x+1)\\
\frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
\d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
\end{align}

Good job so far, now remember that you already know what y is in terms of x, so you can write the derivative completely in terms of x as well.
 
Prove It said:
Good job so far, now remember that you already know what y is in terms of x, so you can write the derivative completely in terms of x as well.
\begin{align}
\displaystyle
y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
\ln{y}&=\ln x
+ \frac{1}{2}\ln(x^2+1)
- \frac{2}{3}\ln(x+1)\\
\frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
\d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
\end{align}

$\displaystyle
y=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \therefore \frac{y}{x}=\frac{\sqrt[]{x^2+1}}{(x+1)^{2/3}}$
which is the first termonline calculator returned this for the answer so not sure how the 2nd term was derived the third is just 2y in numerator then simplify

$y'=\dfrac{\sqrt{x^2+1}}{\left(x+1\right)^\frac{2}{3}}
+\dfrac{x^2}{\left(x+1\right)^\frac{2}{3}\sqrt{x^2+1}}
-\dfrac{2x\sqrt{x^2+1}}{3\left(x+1\right)^\frac{5}{3}}$
 
karush said:
\begin{align}
\displaystyle
y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
\ln{y}&=\ln x
+ \frac{1}{2}\ln(x^2+1)
- \frac{2}{3}\ln(x+1)\\
\frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
\d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
\end{align}

$\displaystyle
y=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \therefore \frac{y}{x}=\frac{\sqrt[]{x^2+1}}{(x+1)^{2/3}}$
which is the first termonline calculator returned this for the answer so not sure how the 2nd term was derived the third is just 2y in numerator then simplify

$y'=\dfrac{\sqrt{x^2+1}}{\left(x+1\right)^\frac{2}{3}}
+\dfrac{x^2}{\left(x+1\right)^\frac{2}{3}\sqrt{x^2+1}}
-\dfrac{2x\sqrt{x^2+1}}{3\left(x+1\right)^\frac{5}{3}}$

I suppose you could do it that way, I would have just done...

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= y \left[ \frac{1}{x} + \frac{x}{x^2 + 1} - \frac{2}{3 \left( x + 1 \right) } \right] \\ &= \frac{x\,\sqrt{ x^2 + 1 }}{\left( x + 1 \right) ^{\frac{2}{3}}} \left[ \frac{1}{x} + \frac{x}{x^2 + 1} - \frac{2}{3\left( x + 1 \right) } \right] \end{align*}$
 
well that make more semse,,
 

Similar threads