How Do You Differentiate $\frac{x \sqrt{x^2+1}}{(x+1)^{2/3}}$?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary

Discussion Overview

The discussion revolves around finding the derivative of the function \( y = \frac{x \sqrt{x^2+1}}{(x+1)^{2/3}} \). Participants explore various methods of differentiation, including implicit differentiation and the quotient rule, while sharing their calculations and reasoning.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Homework-related
  • Exploratory

Main Points Raised

  • One participant begins by expressing the function in logarithmic form to facilitate differentiation, but is uncertain about the next steps.
  • Another suggests using implicit differentiation, providing the derivative of the logarithm of \( y \) and \( x \).
  • Several participants calculate derivatives using the quotient rule, with one breaking down the components \( f \) and \( g \) of the function and finding their derivatives separately.
  • Another participant reiterates the logarithmic differentiation approach and emphasizes substituting \( y \) back into the derivative expression to express it solely in terms of \( x \).
  • One participant expresses confusion regarding the derivation of certain terms in the final derivative and seeks clarification on the simplification process.
  • Another participant proposes an alternative method for differentiation, suggesting a more straightforward approach using the product of \( y \) and the derivative expression.
  • Throughout the discussion, participants share their calculations and reasoning, but there is no consensus on the final form of the derivative or the best method to use.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the final derivative form or the most effective method for differentiation. Multiple approaches and interpretations are presented, leading to ongoing discussion and clarification.

Contextual Notes

Some participants express uncertainty about specific steps in their calculations, and there are indications of missing assumptions or dependencies on definitions that remain unresolved.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242.2q.3}$
$\textsf{find the derivative}\\$
\begin{align}
\displaystyle
y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
\ln{y}&=\ln x
+ \frac{1}{2}\ln(x^2+1)
- \frac{2}{3}\ln(x+1)\\
\end{align}

$\textit{thot this would help but what next??}$
 
Physics news on Phys.org
Use implicit differentiation, knowing that $\d{}{x}\ln\left({x}\right)=\frac{1}{x}$ and $\d{}{x}\ln\left({y}\right)=\frac{1}{y}\d{y}{x}$.
 
$\tiny{242.2q.3}$
$\textsf{find the derivative}\\$
\begin{align}
\displaystyle
y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
\ln{y}&=\ln x
+ \frac{1}{2}\ln(x^2+1)
- \frac{2}{3}\ln(x+1)\\
\frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
\d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
\end{align}
 
Last edited:
$\displaystyle{y=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}}}$

Let $f=x \, \sqrt[]{x^2+1}$ and $g=(x+1)^{2/3}$.

Then $\displaystyle{y'=\frac{f'\cdot g-f\cdot g'}{g^2}} \ \ \ (\star)$

We have the following:
\begin{align*}f' & =(x)' \, \sqrt[]{x^2+1}+x \, (\sqrt[]{x^2+1})'= \sqrt[]{x^2+1}+x \, \frac{1}{2\sqrt[]{x^2+1}}\cdot (x^2+1)' =\sqrt[]{x^2+1}+x \, \frac{2x}{2\sqrt[]{x^2+1}} \\ &=\sqrt[]{x^2+1}+ \, \frac{x^2}{\sqrt[]{x^2+1}} =\frac{\sqrt[]{x^2+1}^2+x^2}{\sqrt[]{x^2+1}}=\frac{x^2+1+x^2}{\sqrt[]{x^2+1}}\\ &=\frac{2x^2+1}{\sqrt[]{x^2+1}}\end{align*}

$$g'=\frac{2}{3}(x+1)^{2/3-1}=\frac{2}{3}(x+1)^{-1/3}$$

$$g^2=(x+1)^{4/3}$$

So, substituting these at the relation $(\star)$ we get:
\begin{align*}y' &=\frac{\frac{2x^2+1}{\sqrt[]{x^2+1}}\cdot (x+1)^{2/3}-x \, \sqrt[]{x^2+1}\cdot \frac{2}{3}(x+1)^{-1/3}}{(x+1)^{4/3}} \\ &=\frac{\sqrt{x^2+1}\left (\frac{2x^2+1}{\sqrt[]{x^2+1}}\cdot (x+1)^{2/3}-x \, \sqrt[]{x^2+1}\cdot \frac{2}{3}(x+1)^{-1/3}\right )}{(x+1)^{4/3}\sqrt{x^2+1}} \\ &=\frac{\left (2x^2+1\right )\cdot (x+1)^{2/3}-x \, (x^2+1)\cdot \frac{2}{3}(x+1)^{-1/3}}{(x+1)^{4/3}\sqrt{x^2+1}} \\ &=\frac{(x+1)^{1/3}\left (\left (2x^2+1\right )\cdot (x+1)^{2/3}-x \, (x^2+1)\cdot \frac{2}{3}(x+1)^{-1/3}\right )}{(x+1)^{1/3}(x+1)^{4/3}\sqrt{x^2+1}} \\ &=\frac{\left (2x^2+1\right )\cdot (x+1)-x \, (x^2+1)\cdot \frac{2}{3}}{(x+1)^{5/3}\sqrt{x^2+1}} \\ & =\frac{3\left (\left (2x^2+1\right )\cdot (x+1)-x \, (x^2+1)\cdot \frac{2}{3}\right )}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{3\left (2x^2+1\right )\cdot (x+1)-2x \, (x^2+1)}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{3\left (2x^3+x+2x^2+1\right )-2 \, (x^3+x)}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{6x^3+3x+6x^2+3-2x^3-2x}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{4x^3+6x^2+x+3}{3(x+1)^{5/3}\sqrt{x^2+1}}\end{align*}
 
karush said:
$\tiny{242.2q.3}$
$\textsf{find the derivative}\\$
\begin{align}
\displaystyle
y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
\ln{y}&=\ln x
+ \frac{1}{2}\ln(x^2+1)
- \frac{2}{3}\ln(x+1)\\
\frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
\d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
\end{align}

Good job so far, now remember that you already know what y is in terms of x, so you can write the derivative completely in terms of x as well.
 
Prove It said:
Good job so far, now remember that you already know what y is in terms of x, so you can write the derivative completely in terms of x as well.
\begin{align}
\displaystyle
y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
\ln{y}&=\ln x
+ \frac{1}{2}\ln(x^2+1)
- \frac{2}{3}\ln(x+1)\\
\frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
\d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
\end{align}

$\displaystyle
y=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \therefore \frac{y}{x}=\frac{\sqrt[]{x^2+1}}{(x+1)^{2/3}}$
which is the first termonline calculator returned this for the answer so not sure how the 2nd term was derived the third is just 2y in numerator then simplify

$y'=\dfrac{\sqrt{x^2+1}}{\left(x+1\right)^\frac{2}{3}}
+\dfrac{x^2}{\left(x+1\right)^\frac{2}{3}\sqrt{x^2+1}}
-\dfrac{2x\sqrt{x^2+1}}{3\left(x+1\right)^\frac{5}{3}}$
 
karush said:
\begin{align}
\displaystyle
y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
\ln{y}&=\ln x
+ \frac{1}{2}\ln(x^2+1)
- \frac{2}{3}\ln(x+1)\\
\frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
\d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
\end{align}

$\displaystyle
y=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \therefore \frac{y}{x}=\frac{\sqrt[]{x^2+1}}{(x+1)^{2/3}}$
which is the first termonline calculator returned this for the answer so not sure how the 2nd term was derived the third is just 2y in numerator then simplify

$y'=\dfrac{\sqrt{x^2+1}}{\left(x+1\right)^\frac{2}{3}}
+\dfrac{x^2}{\left(x+1\right)^\frac{2}{3}\sqrt{x^2+1}}
-\dfrac{2x\sqrt{x^2+1}}{3\left(x+1\right)^\frac{5}{3}}$

I suppose you could do it that way, I would have just done...

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= y \left[ \frac{1}{x} + \frac{x}{x^2 + 1} - \frac{2}{3 \left( x + 1 \right) } \right] \\ &= \frac{x\,\sqrt{ x^2 + 1 }}{\left( x + 1 \right) ^{\frac{2}{3}}} \left[ \frac{1}{x} + \frac{x}{x^2 + 1} - \frac{2}{3\left( x + 1 \right) } \right] \end{align*}$
 
well that make more semse,,
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K