How Do You Differentiate $\frac{x \sqrt{x^2+1}}{(x+1)^{2/3}}$?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
SUMMARY

The discussion focuses on differentiating the function \( y = \frac{x \sqrt{x^2+1}}{(x+1)^{2/3}} \) using implicit differentiation and logarithmic properties. Participants derive the derivative \( y' \) through the application of the product and chain rules, leading to the final expression \( y' = \frac{4x^3 + 6x^2 + x + 3}{3(x+1)^{5/3}\sqrt{x^2+1}} \). The conversation emphasizes the importance of rewriting derivatives in terms of \( x \) for clarity and accuracy.

PREREQUISITES
  • Understanding of implicit differentiation
  • Familiarity with logarithmic differentiation
  • Knowledge of the product and chain rules in calculus
  • Ability to manipulate algebraic expressions involving square roots and exponents
NEXT STEPS
  • Study the application of logarithmic differentiation in more complex functions
  • Explore the product and chain rules in calculus with additional examples
  • Learn about higher-order derivatives and their applications
  • Investigate the behavior of derivatives in relation to function graphs
USEFUL FOR

Students studying calculus, mathematics educators, and anyone interested in mastering differentiation techniques for complex functions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242.2q.3}$
$\textsf{find the derivative}\\$
\begin{align}
\displaystyle
y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
\ln{y}&=\ln x
+ \frac{1}{2}\ln(x^2+1)
- \frac{2}{3}\ln(x+1)\\
\end{align}

$\textit{thot this would help but what next??}$
 
Physics news on Phys.org
Use implicit differentiation, knowing that $\d{}{x}\ln\left({x}\right)=\frac{1}{x}$ and $\d{}{x}\ln\left({y}\right)=\frac{1}{y}\d{y}{x}$.
 
$\tiny{242.2q.3}$
$\textsf{find the derivative}\\$
\begin{align}
\displaystyle
y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
\ln{y}&=\ln x
+ \frac{1}{2}\ln(x^2+1)
- \frac{2}{3}\ln(x+1)\\
\frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
\d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
\end{align}
 
Last edited:
$\displaystyle{y=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}}}$

Let $f=x \, \sqrt[]{x^2+1}$ and $g=(x+1)^{2/3}$.

Then $\displaystyle{y'=\frac{f'\cdot g-f\cdot g'}{g^2}} \ \ \ (\star)$

We have the following:
\begin{align*}f' & =(x)' \, \sqrt[]{x^2+1}+x \, (\sqrt[]{x^2+1})'= \sqrt[]{x^2+1}+x \, \frac{1}{2\sqrt[]{x^2+1}}\cdot (x^2+1)' =\sqrt[]{x^2+1}+x \, \frac{2x}{2\sqrt[]{x^2+1}} \\ &=\sqrt[]{x^2+1}+ \, \frac{x^2}{\sqrt[]{x^2+1}} =\frac{\sqrt[]{x^2+1}^2+x^2}{\sqrt[]{x^2+1}}=\frac{x^2+1+x^2}{\sqrt[]{x^2+1}}\\ &=\frac{2x^2+1}{\sqrt[]{x^2+1}}\end{align*}

$$g'=\frac{2}{3}(x+1)^{2/3-1}=\frac{2}{3}(x+1)^{-1/3}$$

$$g^2=(x+1)^{4/3}$$

So, substituting these at the relation $(\star)$ we get:
\begin{align*}y' &=\frac{\frac{2x^2+1}{\sqrt[]{x^2+1}}\cdot (x+1)^{2/3}-x \, \sqrt[]{x^2+1}\cdot \frac{2}{3}(x+1)^{-1/3}}{(x+1)^{4/3}} \\ &=\frac{\sqrt{x^2+1}\left (\frac{2x^2+1}{\sqrt[]{x^2+1}}\cdot (x+1)^{2/3}-x \, \sqrt[]{x^2+1}\cdot \frac{2}{3}(x+1)^{-1/3}\right )}{(x+1)^{4/3}\sqrt{x^2+1}} \\ &=\frac{\left (2x^2+1\right )\cdot (x+1)^{2/3}-x \, (x^2+1)\cdot \frac{2}{3}(x+1)^{-1/3}}{(x+1)^{4/3}\sqrt{x^2+1}} \\ &=\frac{(x+1)^{1/3}\left (\left (2x^2+1\right )\cdot (x+1)^{2/3}-x \, (x^2+1)\cdot \frac{2}{3}(x+1)^{-1/3}\right )}{(x+1)^{1/3}(x+1)^{4/3}\sqrt{x^2+1}} \\ &=\frac{\left (2x^2+1\right )\cdot (x+1)-x \, (x^2+1)\cdot \frac{2}{3}}{(x+1)^{5/3}\sqrt{x^2+1}} \\ & =\frac{3\left (\left (2x^2+1\right )\cdot (x+1)-x \, (x^2+1)\cdot \frac{2}{3}\right )}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{3\left (2x^2+1\right )\cdot (x+1)-2x \, (x^2+1)}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{3\left (2x^3+x+2x^2+1\right )-2 \, (x^3+x)}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{6x^3+3x+6x^2+3-2x^3-2x}{3(x+1)^{5/3}\sqrt{x^2+1}} \\ &=\frac{4x^3+6x^2+x+3}{3(x+1)^{5/3}\sqrt{x^2+1}}\end{align*}
 
karush said:
$\tiny{242.2q.3}$
$\textsf{find the derivative}\\$
\begin{align}
\displaystyle
y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
\ln{y}&=\ln x
+ \frac{1}{2}\ln(x^2+1)
- \frac{2}{3}\ln(x+1)\\
\frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
\d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
\end{align}

Good job so far, now remember that you already know what y is in terms of x, so you can write the derivative completely in terms of x as well.
 
Prove It said:
Good job so far, now remember that you already know what y is in terms of x, so you can write the derivative completely in terms of x as well.
\begin{align}
\displaystyle
y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
\ln{y}&=\ln x
+ \frac{1}{2}\ln(x^2+1)
- \frac{2}{3}\ln(x+1)\\
\frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
\d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
\end{align}

$\displaystyle
y=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \therefore \frac{y}{x}=\frac{\sqrt[]{x^2+1}}{(x+1)^{2/3}}$
which is the first termonline calculator returned this for the answer so not sure how the 2nd term was derived the third is just 2y in numerator then simplify

$y'=\dfrac{\sqrt{x^2+1}}{\left(x+1\right)^\frac{2}{3}}
+\dfrac{x^2}{\left(x+1\right)^\frac{2}{3}\sqrt{x^2+1}}
-\dfrac{2x\sqrt{x^2+1}}{3\left(x+1\right)^\frac{5}{3}}$
 
karush said:
\begin{align}
\displaystyle
y&=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \\
\ln{y}&=\ln x
+ \frac{1}{2}\ln(x^2+1)
- \frac{2}{3}\ln(x+1)\\
\frac{1}{y}\d{y}{x}&=\frac{1}{x}+\dfrac{x}{x^2+1}-\dfrac{2}{3\left(x+1\right)}\\
\d{y}{x}&=\frac{y}{x}+\dfrac{xy}{x^2+1}-\dfrac{2y}{3\left(x+1\right)}
\end{align}

$\displaystyle
y=\frac{x \, \sqrt[]{x^2+1}}{(x+1)^{2/3}} \therefore \frac{y}{x}=\frac{\sqrt[]{x^2+1}}{(x+1)^{2/3}}$
which is the first termonline calculator returned this for the answer so not sure how the 2nd term was derived the third is just 2y in numerator then simplify

$y'=\dfrac{\sqrt{x^2+1}}{\left(x+1\right)^\frac{2}{3}}
+\dfrac{x^2}{\left(x+1\right)^\frac{2}{3}\sqrt{x^2+1}}
-\dfrac{2x\sqrt{x^2+1}}{3\left(x+1\right)^\frac{5}{3}}$

I suppose you could do it that way, I would have just done...

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= y \left[ \frac{1}{x} + \frac{x}{x^2 + 1} - \frac{2}{3 \left( x + 1 \right) } \right] \\ &= \frac{x\,\sqrt{ x^2 + 1 }}{\left( x + 1 \right) ^{\frac{2}{3}}} \left[ \frac{1}{x} + \frac{x}{x^2 + 1} - \frac{2}{3\left( x + 1 \right) } \right] \end{align*}$
 
well that make more semse,,
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K