MHB How Do You Find the Equation of a Line Through a Point and a Circle's Center?

  • Thread starter Thread starter mathdad
  • Start date Start date
mathdad
Messages
1,280
Reaction score
0
Find an equation of the line that passes through (3, -5) and through the center of the circle given.

x^2 + y^2 + 4x - 4y + 4 = 0

1. Does this question involve completing the square?

2. Must I then write the equation of the circle as

(x - h)2 + (y - k)^2 = r^2 which will disclose the center of the circle not centered at the origin. Yes?
 
Mathematics news on Phys.org
1 & 2.) Yes, complete the square on both $x$ and $y$ so that you can write the equation of the circle in the form you posted, revealing the center. Then you will have two points on the line, from which you may compute the slope, and then use the point-slope formula to get the equation of the line. (Yes)
 
MarkFL said:
1 & 2.) Yes, complete the square on both $x$ and $y$ so that you can write the equation of the circle in the form you posted, revealing the center. Then you will have two points on the line, from which you may compute the slope, and then use the point-slope formula to get the equation of the line. (Yes)

Sometimes, a little thinking goes a long way.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
4
Views
1K
Replies
6
Views
2K
Replies
5
Views
2K
Replies
8
Views
2K
Replies
4
Views
2K
Back
Top