How Do You Normalize a Function to Have a Maximum of 1 and Minimum of 0?

  • Thread starter Thread starter maxtor101
  • Start date Start date
  • Tags Tags
    Function
maxtor101
Messages
22
Reaction score
0
Hi all,

Say if I had a function for example p(x) = \beta \cos(\pi x)

And I wanted to alter it such that the max value of p(x) is 1 and its minimum value is 0.

How would I go about doing this?

Thanks for your help in advance!
Max
 
Mathematics news on Phys.org
maxtor101 said:
Hi all,

Say if I had a function for example p(x) = \beta \cos(\pi x)

And I wanted to alter it such that the max value of p(x) is 1 and its minimum value is 0.

How would I go about doing this?

Thanks for your help in advance!
Max
Do you know the minimum and maximum values of p(x) = \beta \cos(\pi x) (before changing p(x))?
 
Well yes, the maximum value would be \beta and the minimum value would be - \beta..
 
Well a very simple way to do it would be to first "shrink" your range from being -β to β, and making it 1. You can do this by dividing by 2β, and you get p'(x) = 0.5 cos(\pix)
Now your function covers -0.5 to 0.5 so what you have to do now is move its range "up" by 0.5... so you get p''(x) = 0.5 (cos(\pix) + 1)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top