MHB How Do You Prove a Logarithmic Identity Involving Powers of x?

Chipset3600
Messages
79
Reaction score
0
Hello MHB.

How can i proof this equation?

[h=5]log(x).log(x^2).log(x^3)... log(x^90)=4095[/h]
 
Mathematics news on Phys.org
Re: Proof

Chipset3600 said:
Hello MHB.

How can i proof this equation?

log(x).log(x^2).log(x^3)... log(x^90)=4095
This ain't true. Put x=1 and you get 0=4095.
 
Re: Proof

Chipset3600 said:
Hello MHB.

How can i proof this equation?

[h=5]log(x).log(x^2).log(x^3)... log(x^90)=4095[/h]

Let's assume you mean to do something with the expression
$$log(x)+log(x^2)+log(x^3)+\cdots +log(x^{90})$$
(by the way, we could also write this as $\sum_{n=1}^{90} log\left(x^n\right)$ )

What we could do is say that for any n, we have $log(x^n)=n\cdot log(x)$. With that in mind, our sum becomes
$$log(x)+2 \, log(x)+3\, log(x)+\cdots +90\, log(x)$$
factoring, we have
$$(1+2+3+\cdots+90)\,log(x)$$
which gives us
$$\sum_{n=1}^{90} log\left(x^n\right)=\frac{91\cdot 90}{2} \,log(x) = 4095\,log(x)$$
Which is what I assume you meant.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top