How Do You Prove a Mapping is Surjective?

  • Context: MHB 
  • Thread starter Thread starter rputra
  • Start date Start date
  • Tags Tags
    Mapping Surjective
Click For Summary

Discussion Overview

The discussion revolves around proving that a specific mapping \( L: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) defined by \( L(x, y, z) = (x+z, y+z, x+y) \) is surjective (onto). Participants explore various methods to demonstrate that the image of the mapping equals the co-domain, focusing on theoretical aspects of surjectivity in the context of linear mappings.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant seeks assistance in proving that \( L \) is onto, expressing uncertainty about how to show that \( \text{Im}(L) = \mathbb{R}^3 \).
  • Another participant clarifies that a function is onto if every point in the co-domain has at least one pre-image, suggesting a method to solve for originals given a point in the co-domain.
  • A participant proposes a traditional approach to proving surjectivity by showing both \( \text{Im}(L) \subset \mathbb{R}^3 \) and \( \mathbb{R}^3 \subset \text{Im}(L) \), leading to the conclusion that \( \text{Im}(L) = \mathbb{R}^3 \).
  • It is noted that \( \text{Im}(L) \subset \mathbb{R}^3 \) is implicit from the function definition, emphasizing the need to prove the reverse inclusion.

Areas of Agreement / Disagreement

Participants express different methods and approaches to proving the surjectivity of the mapping, but there is no consensus on a definitive method or conclusion regarding the proof.

Contextual Notes

Participants do not resolve the mathematical steps involved in proving surjectivity, and there are varying interpretations of the approach to take.

rputra
Messages
35
Reaction score
0
I have a mapping $L: \mathbb R^3 \rightarrow \mathbb R^3$ as defined by $L(x, y, z) = (x+z, y+z, x+y).$ How do you prove that the $L$ is an onto mapping? I know for sure that $\forall x, y, z \in \mathbb R$, then $x+z, y+z, x+y \in \mathbb R$ too. Then I need to prove that $Im (L) = \mathbb R^3$ the co-domain, but I do not know how to proceed officially.

Any help would be very much appreciated. Thank you for your time.
 
Last edited:
Physics news on Phys.org
Tarrant said:
I have a mapping $L: \mathbb R^3 \rightarrow \mathbb R^3$ as defined by $L(x, y, z) = L(x+z, y+z, x+y).$ How do you prove that the $L$ is an onto mapping? I know for sure that $\forall x, y, z \in \mathbb R$, then $x+z, y+z, x+y \in \mathbb R$ too. Then I need to prove that $Im (L) = \mathbb R^3$ the co-domain, but I do not know how to proceed officially.

Any help would be very much appreciated. Thank you for your time.

Hi Tarrant! Welcome to MHB! ;)

I assume that should be $L(x, y, z) = (x+z, y+z, x+y)$?

A function is onto iff each point in the co-domain has at least 1 original.

Let's pick a point $(X,Y,Z)$ in the co-domain.
Then to find the originals if any, we need to solve:
$$\begin{cases}x+z=X \\ y+z=Y \\ z+y=Z \end{cases}$$

If we can always find an $(x,y,z)$, the function is onto.
If additionally, there is always exactly one such $(x,y,z)$, the function is also $1-1$ and therefore $bijective$.
 
I like Serena said:
Hi Tarrant! Welcome to MHB! ;)

I assume that should be $L(x, y, z) = (x+z, y+z, x+y)$?

A function is onto iff each point in the co-domain has at least 1 original.

Let's pick a point $(X,Y,Z)$ in the co-domain.
Then to find the originals if any, we need to solve:
$$\begin{cases}x+z=X \\ y+z=Y \\ z+y=Z \end{cases}$$

If we can always find an $(x,y,z)$, the function is onto.
If additionally, there is always exactly one such $(x,y,z)$, the function is also $1-1$ and therefore $bijective$.
Thanks for responding to my posting and thanks also to your correction. I have made the correction. In hindsight, I think I can also prove it the traditional ways, that is first proving that the range $Im(L) \subset \mathbb R^3$ the co-domain, and then the other way around, proving that the co-domain $\mathbb R^3 \subset Im(L)$ the range. Then these two of them lead to the range $Im(L) = \mathbb R^3$ the codomain. Remember the mapping we have is $L: \mathbb R^3 \rightarrow \mathbb R^3.$

Thank you again.
 
Tarrant said:
Thanks for responding to my posting and thanks also to your correction. I have made the correction. In hindsight, I think I can also prove it the traditional ways, that is first proving that the range $Im(L) \subset \mathbb R^3$ the co-domain, and then the other way around, proving that the co-domain $\mathbb R^3 \subset Im(L)$ the range. Then these two of them lead to the range $Im(L) = \mathbb R^3$ the codomain. Remember the mapping we have is $L: \mathbb R^3 \rightarrow \mathbb R^3.$

Thank you again.

That's the same thing.
$\operatorname{Im}(L) \subset \mathbb R^3$ is implicit from the function definition.
So what we need to prove is indeed $\mathbb R^3 \subset \operatorname{Im}(L)$, meaning every point in the co-domain has to have at least one original.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K