MHB How Do You Simplify (x^2-2x+1)/(x-1) to x-1?

  • Thread starter Thread starter linapril
  • Start date Start date
  • Tags Tags
    Simplifying
linapril
Messages
22
Reaction score
0
Could someone explain how I'd simplify (x2-2x+1)/(x-1) to become x-1? Thanks a bunch!
 
Mathematics news on Phys.org
Re: Easy algebra

linapril said:
Could someone explain how I'd simplify (x2-2x+1)/(x-1) to become x-1? Thanks a bunch!

Hi linapril, :)

Are you familiar with how to factor? Here's how I would do this problem.

[math]\frac{x^2-2x+1}{x-1}=\frac{(x-1)(x-1)}{x-1}=x-1[/math]

Jameson
 
Re: Easy algebra

Jameson said:
Hi linapril, :)

Are you familiar with how to factor? Here's how I would do this problem.

[math]\frac{x^2-2x+1}{x-1}=\frac{(x-1)(x-1)}{x-1}=x-1[/math]

Jameson

Along with the proviso that $x\not=1$. Any time you cancel factors such that there is no longer that factor in the denominator, you must include a proviso so that you preserve the domain of the original function.
 
This is the method I have taught students I have tutored on how to factor quadratics.

Consider the general quadratic:

$\displaystyle ax^2+bx+c$

In the case of $\displaystyle x^2-2x+1=(1)x^2+(-2)x+(1)$, we identify:

$a=1,\,b=-2,\,c=1$

To factor, I first look at the product $ac=(1)(1)=1$. We want to find two factors of 1 whose sum is $b=-1$, and so those factors are -1 and -1, since $(-1)(-1)=1$ and $(-1)+(-1)=-2$.

Since $a=1$, we know the factorization will be of the form:

$(x\cdots)(x\cdots)$

To understand why the method I outlined works, we could set:

$x^2-2x+1=(x+d)(x+e)=x^2+(d+e)x+de$

Equating coefficients, we see we need two numbers $d$ and $e$ that simultaneously satisfy:

$d+e=-2$

$de=1$

As we already found, we need $d=e=-1$.

And so we may replace the dots with the two factors we found:

$(x-1)(x-1)=(x-1)^2$

Thus, we may state:

$x^2-2x+1=(x-1)^2$

The method I outlined can get a little more involved if $a$ is not 1, even more involved still if $a$ is a composite number. Consider the quadratic:

$8x^2+34x+35$

We want two factors of $8\cdot35=280$ whose sum is $34$. They are $14$ and $20$. Now we must observe that $20$ is divisible by $4$ and $14$ is divisible by $2$. The product of $2$ and $4$ will give is $a=8$.

So, we will have the form:

$(4x\cdots)(2x\cdots)$

$\displaystyle \frac{20}{4}=5$ and $\displaystyle \frac{14}{2}=7$ so we have:

$8x^2+34x+35=(4x+7)(2x+5)$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top