cjc0117
- 91
- 1
Homework Statement
Solve x(1-x)\frac{d^{2}y}{dx^{2}}-2\frac{dy}{dx}+2y=0 using the Frobenius Method.
Homework Equations
R(x)\frac{d^{2}y}{dx^{2}}+\frac{1}{x}P(x)\frac{dy}{dx}+\frac{1}{x^{2}}V(x)y=0
R_{0}s(s-1)+P_{0}s+V_{0}=0
y=\sum^{∞}_{m=0}a_{m}x^{m+s}
y'=\sum^{∞}_{m=0}a_{m}(m+s)x^{m+s-1}
y''=\sum^{∞}_{m=0}a_{m}(m+s)(m+s-1)x^{m+s-2}
The Attempt at a Solution
First, I divided everything by x. The diff. eq. becomes:
(1-x)\frac{d^{2}y}{dx^{2}}-\frac{2}{x}\frac{dy}{dx}+\frac{2}{x}y=0
It follows that R(x)=1-x, P(x)=-2, and V(x)=2x. Thus, R_{0}=1, P_{0}=-2, and V_{0}=0. The indicial roots are then s=0 and s=3.I then plug y=\sum^{∞}_{m=0}a_{m}x^{m+s} and its derivatives into the original diff. eq. and find the recurrence relation:
(1-x)\sum^{∞}_{m=0}a_{m}(m+s)(m+s-1)x^{m+s-2}-\frac{2}{x}\sum^{∞}_{m=0}a_{m}(m+s)x^{m+s-1}+\frac{2}{x}\sum^{∞}_{m=0}a_{m}x^{m+s}=0
\sum^{∞}_{m=0}a_{m}(m+s)(m+s-1)x^{m+s-2}-\sum^{∞}_{m=0}a_{m}(m+s)(m+s-1)x^{m+s-1}-2\sum^{∞}_{m=0}a_{m}(m+s)x^{m+s-2}+2\sum^{∞}_{m=0}a_{m}x^{m+s-1}=0
\sum^{∞}_{m=0}a_{m+1}(m+s+1)(m+s)x^{m+s-1}-\sum^{∞}_{m=0}a_{m}(m+s)(m+s-1)x^{m+s-1}-2\sum^{∞}_{m=0}a_{m+1}(m+s+1)x^{m+s-1}+2\sum^{∞}_{m=0}a_{m}x^{m+s-1}=0
a_{m+1}(m+s+1)(m+s-2)-a_{m}[(m+s)(m+s-1)-2]=0
a_{m+1}=a_{m}
I don't understand what this result means (if I even did it right) and how I would continue from here.