MHB How Do You Solve a Geometric Sum with Alternating Signs?

AI Thread Summary
To solve the geometric sum with alternating signs, the sum S is defined as S = 3 - 3/2 + 3/4 - 3/8 + 3/16 - 3/32 + ... - 3/128. The common ratio is identified as r = -1/2, and the first term is a = 3. The sum can be calculated using the geometric series formula, which requires determining the number of terms, n, and the common ratio. The series can be expressed as S = 3 * Σ from j=0 to 7 of (-1/2)^j. The solution involves applying the geometric sum formula to find the total value of S.
Kola Citron
Messages
1
Reaction score
0
Hey!

I'm stuck again and not sure how to solve this question been at it for a few hours. Any help is appreciated as always.

Q: (1) Let the sum S = 3- 3/2 + 3/4 - 3/8 + 3/16 - 3/32 +...- 3/128. Determine integers a , n and a rational number k so that...(Image)

r/askmath - Summation and geometric sums

(2 )And then calculate S using the geometric sum formula.

Thank you!
 
Mathematics news on Phys.org
common ratio is $r = -\dfrac{1}{2}$

note $128 = 2^7$

first term is $a = 3$

$\displaystyle S = 3 \sum_{j=0}^7 \left(-\dfrac{1}{2}\right)^j$

you can calculate the sum ...
 
Given that it is a "geometric sum", a+ ar+ ar^2+ ...,, you can determine r, the "common ratio" by just dividing the second term by the first: ar/a= r. In this problem that is (-3/2)/3= -1/2.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top