MHB How Do You Solve a Geometric Sum with Alternating Signs?

Kola Citron
Messages
1
Reaction score
0
Hey!

I'm stuck again and not sure how to solve this question been at it for a few hours. Any help is appreciated as always.

Q: (1) Let the sum S = 3- 3/2 + 3/4 - 3/8 + 3/16 - 3/32 +...- 3/128. Determine integers a , n and a rational number k so that...(Image)

r/askmath - Summation and geometric sums

(2 )And then calculate S using the geometric sum formula.

Thank you!
 
Mathematics news on Phys.org
common ratio is $r = -\dfrac{1}{2}$

note $128 = 2^7$

first term is $a = 3$

$\displaystyle S = 3 \sum_{j=0}^7 \left(-\dfrac{1}{2}\right)^j$

you can calculate the sum ...
 
Given that it is a "geometric sum", a+ ar+ ar^2+ ...,, you can determine r, the "common ratio" by just dividing the second term by the first: ar/a= r. In this problem that is (-3/2)/3= -1/2.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top