MHB How Do You Solve the Exponential Equation 2^(4x-3) = 1/8?

  • Thread starter Thread starter shorty888
  • Start date Start date
  • Tags Tags
    Exponential
Click For Summary
To solve the exponential equation 2^(4x-3) = 1/8, recognize that 1/8 can be expressed as 2^(-3). This leads to the equation 2^(4x-3) = 2^(-3), allowing for the comparison of exponents. Setting the exponents equal gives the equation 4x - 3 = -3. Solving this results in the value of x. The discussion emphasizes using logarithms and exponent properties to simplify the problem.
shorty888
Messages
6
Reaction score
0
Solve 2^(4x-3)=1/8, find the exact answer
 
Mathematics news on Phys.org
Re: Solve

shorty888 said:
Solve 2^(4x-3)=1/8, find the exact answer

Since \(1/8=2^{-3}\), you want to solve:

\(2^{4x-3}=2^{-3}\)

so, now can you do it?

CB
 
Re: Solve

shorty888 said:
Solve 2^(4x-3)=1/8, find the exact answer

Compute logarithm base 2 of both terms...

Kind regards

$\chi$ $\sigma$
 
Re: Solve

No, I don't understand.. I can't do it.. How??
 
Re: Solve

shorty888 said:
No, I don't understand.. I can't do it.. How??

You have $\displaystyle a=b \implies \log_{2} a= \log_{2} b$, so that $\displaystyle a=2^{4x-3},\ b=\frac{1}{8} \rightarrow 4x-3=-3$ and we have a first order algebraic equation...

Kind regards

$\chi$ $\sigma$
 
Re: Solve

shorty888 said:
No, I don't understand.. I can't do it.. How??

In future please quote which post you are responding to (use the reply with quote option).

If you are referring to my post, the exponents on both sides are equal so: \(4x-3=-3\)

This is essentially the same as chisigma's method.

CB
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K