How do you solve the integral of 1 over (a+cos(theta)^2) from 0 to 2pi for a>1?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The integral of 1 over (a + cos(θ)^2) from 0 to 2π for a > 1 can be evaluated to show that ∫_0^(2π) (dθ / (a + cos(θ))^2) equals (2πa) / (a^2 - 1)^(3/2). Sudharaka provided the correct solution to this problem. The evaluation involves techniques from calculus, specifically integration and trigonometric identities. The result highlights the relationship between the integral and the parameters involved, particularly for values of a greater than one. This integral is significant in various applications, including physics and engineering.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem.

-----

Problem: For $a>1$, show that\[\int_0^{2\pi}\frac{\,d\theta}{(a+\cos\theta)^2} = \frac{2\pi a}{(a^2-1)^{3/2}}.\]

-----

Hint:
Use the substitution $z=\exp(i\theta)$ to rewrite the definite integral as a contour integral over the unit circle $|z|=1$.

 
Physics news on Phys.org
This week's question was correctly answered by Sudharaka.

Here's my solution:
Let $z=e^{i\theta}$. Then $\cos\theta=\tfrac{1}{2}(z+z^{-1})$ and $\,dz=ie^{i\theta}\,d\theta$. Therefore, the integral becomes

\[\int_{|z|=1}\frac{\,dz}{iz\left(a+\frac{1}{2}(z+1/z)\right)^2} = \int_{|z|=1} \frac{-4iz\,dz}{(z^2+2az+1)^2}.\]
Thus, $f(z)$ has two poles of order $2$ at $z=-a-\sqrt{a^2-1}$ and $z=-a+\sqrt{a^2-1}$. Clearly, $-a-\sqrt{a^2-1}$ is not inside the unit circle, so we can disregard it. However, note that $a\leq 1+\sqrt{a^2-1}$ (due to the triangle inequality), which implies that
\[a-\sqrt{a^2-1}\leq 1 \implies -a+\sqrt{a^2-1}\geq-1.\]
So $-a+\sqrt{a^2-1}$ is contained in the unit circle and now the residue at that point is
\[\begin{aligned}\text{res}_{-a+\sqrt{a^2-1}}f(z) &= \lim_{z\to-a+\sqrt{a^2-1}}\frac{\,d}{\,dz}\left[\frac{-4iz}{(z+a+\sqrt{a^2-1})^2}\right]\\ &=\lim_{z\to-a+\sqrt{a^2-1}}\frac{-4i(z+a+\sqrt{a^2-1})^2+8iz(z+a+\sqrt{a^2-1})}{(z+a+\sqrt{a^2-1})^4}\\ &=\lim_{z\to-a+\sqrt{a^2-1}}\frac{-4i(z+a+\sqrt{a^2-1})+8iz}{(z+a+\sqrt{a^2-1})^3}\\ &=\frac{-4i(2\sqrt{a^2-1})+8i(-a+\sqrt{a^2-1})}{(2\sqrt{a^2-1})^3}\\&=\frac{-ia}{(a^2-1)^{3/2}}\end{aligned}\]
Therefore,
\[\int_0^{2\pi}\frac{\,d\theta}{(a+\cos\theta)^2}= \int_{|z|=1}\frac{-4iz}{(z^2+2az+1)^2} = 2\pi i\left(\frac{-ia}{(a^2-1)^{3/2}}\right) = \frac{2\pi a}{(a^2-1)^{3/2}}\]
Here's Sudharaka's solution:

Substitute \(z=\exp(i\theta)\) and we get,

\begin{eqnarray}

\int_0^{2\pi}\frac{\,d\theta}{(a+\cos\theta)^2} &=& \frac{4}{i}\int_{C}\frac{z}{\left[z-(\sqrt{a^2-1}-a)\right]^{2}\left[z+\sqrt{a^2-1}+a\right]^{2}}\mbox{ where }C\mbox{ is the contour }|z|=1\\

&=& \frac{4}{i}\int_{C}\frac{f(z)}{\left[z-(\sqrt{a^2-1}-a)\right]^{2}}\mbox{ where }f(z)=\frac{z}{\left[z+\sqrt{a^2-1}+a\right]^{2}}\\\end{eqnarray}

It could be shown that, \(|\sqrt{a^2-1}-a|<1\) and therefore the point \(\sqrt{a^2-1}-a\) lie within the contour \(|z|=1\). Using Cauchy's integral formula we get,

\begin{eqnarray}

\int_0^{2\pi}\frac{\,d\theta}{(a+\cos\theta)^2}&=&\frac{4}{i}\left[2\pi i f'\left(\sqrt{a^2-1}-a\right)\right]\\

&=&8\pi \left[\frac{(z+a+\sqrt{a^2-1})^2-2z(z+a+\sqrt{a^2-1})}{(z+a+\sqrt{a^2-1})^4}\right]_{z=\sqrt{a^2-1}-a}\\

\end{eqnarray}

Simplifying this we get,

\[\int_0^{2\pi}\frac{\,d\theta}{(a+\cos\theta)^2} = \frac{2\pi a}{(a^2-1)^{3/2}}\]
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K