How do you solve the integral of 1 over (a+cos(theta)^2) from 0 to 2pi for a>1?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
SUMMARY

The integral of \( \frac{1}{(a+\cos\theta)^2} \) from 0 to \( 2\pi \) for \( a > 1 \) evaluates to \( \frac{2\pi a}{(a^2-1)^{3/2}} \). This conclusion is derived from applying techniques in integral calculus, specifically using trigonometric identities and properties of definite integrals. Sudharaka provided the correct solution, confirming the validity of the result through detailed calculations.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with trigonometric identities
  • Knowledge of definite integrals
  • Experience with mathematical proofs
NEXT STEPS
  • Study advanced techniques in integral calculus
  • Explore trigonometric substitution methods
  • Learn about the properties of definite integrals
  • Investigate applications of integrals in physics and engineering
USEFUL FOR

Mathematicians, physics students, and anyone interested in advanced calculus techniques will benefit from this discussion.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem.

-----

Problem: For $a>1$, show that\[\int_0^{2\pi}\frac{\,d\theta}{(a+\cos\theta)^2} = \frac{2\pi a}{(a^2-1)^{3/2}}.\]

-----

Hint:
Use the substitution $z=\exp(i\theta)$ to rewrite the definite integral as a contour integral over the unit circle $|z|=1$.

 
Physics news on Phys.org
This week's question was correctly answered by Sudharaka.

Here's my solution:
Let $z=e^{i\theta}$. Then $\cos\theta=\tfrac{1}{2}(z+z^{-1})$ and $\,dz=ie^{i\theta}\,d\theta$. Therefore, the integral becomes

\[\int_{|z|=1}\frac{\,dz}{iz\left(a+\frac{1}{2}(z+1/z)\right)^2} = \int_{|z|=1} \frac{-4iz\,dz}{(z^2+2az+1)^2}.\]
Thus, $f(z)$ has two poles of order $2$ at $z=-a-\sqrt{a^2-1}$ and $z=-a+\sqrt{a^2-1}$. Clearly, $-a-\sqrt{a^2-1}$ is not inside the unit circle, so we can disregard it. However, note that $a\leq 1+\sqrt{a^2-1}$ (due to the triangle inequality), which implies that
\[a-\sqrt{a^2-1}\leq 1 \implies -a+\sqrt{a^2-1}\geq-1.\]
So $-a+\sqrt{a^2-1}$ is contained in the unit circle and now the residue at that point is
\[\begin{aligned}\text{res}_{-a+\sqrt{a^2-1}}f(z) &= \lim_{z\to-a+\sqrt{a^2-1}}\frac{\,d}{\,dz}\left[\frac{-4iz}{(z+a+\sqrt{a^2-1})^2}\right]\\ &=\lim_{z\to-a+\sqrt{a^2-1}}\frac{-4i(z+a+\sqrt{a^2-1})^2+8iz(z+a+\sqrt{a^2-1})}{(z+a+\sqrt{a^2-1})^4}\\ &=\lim_{z\to-a+\sqrt{a^2-1}}\frac{-4i(z+a+\sqrt{a^2-1})+8iz}{(z+a+\sqrt{a^2-1})^3}\\ &=\frac{-4i(2\sqrt{a^2-1})+8i(-a+\sqrt{a^2-1})}{(2\sqrt{a^2-1})^3}\\&=\frac{-ia}{(a^2-1)^{3/2}}\end{aligned}\]
Therefore,
\[\int_0^{2\pi}\frac{\,d\theta}{(a+\cos\theta)^2}= \int_{|z|=1}\frac{-4iz}{(z^2+2az+1)^2} = 2\pi i\left(\frac{-ia}{(a^2-1)^{3/2}}\right) = \frac{2\pi a}{(a^2-1)^{3/2}}\]
Here's Sudharaka's solution:

Substitute \(z=\exp(i\theta)\) and we get,

\begin{eqnarray}

\int_0^{2\pi}\frac{\,d\theta}{(a+\cos\theta)^2} &=& \frac{4}{i}\int_{C}\frac{z}{\left[z-(\sqrt{a^2-1}-a)\right]^{2}\left[z+\sqrt{a^2-1}+a\right]^{2}}\mbox{ where }C\mbox{ is the contour }|z|=1\\

&=& \frac{4}{i}\int_{C}\frac{f(z)}{\left[z-(\sqrt{a^2-1}-a)\right]^{2}}\mbox{ where }f(z)=\frac{z}{\left[z+\sqrt{a^2-1}+a\right]^{2}}\\\end{eqnarray}

It could be shown that, \(|\sqrt{a^2-1}-a|<1\) and therefore the point \(\sqrt{a^2-1}-a\) lie within the contour \(|z|=1\). Using Cauchy's integral formula we get,

\begin{eqnarray}

\int_0^{2\pi}\frac{\,d\theta}{(a+\cos\theta)^2}&=&\frac{4}{i}\left[2\pi i f'\left(\sqrt{a^2-1}-a\right)\right]\\

&=&8\pi \left[\frac{(z+a+\sqrt{a^2-1})^2-2z(z+a+\sqrt{a^2-1})}{(z+a+\sqrt{a^2-1})^4}\right]_{z=\sqrt{a^2-1}-a}\\

\end{eqnarray}

Simplifying this we get,

\[\int_0^{2\pi}\frac{\,d\theta}{(a+\cos\theta)^2} = \frac{2\pi a}{(a^2-1)^{3/2}}\]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
3
Views
2K