How Do You Solve These Commutator Relations?

Juli
Messages
24
Reaction score
6
Homework Statement
Solve ##[\hat{r}^{17}, \hat{p}]## and ##[\hat{r}, \hat{p}^{250}]##
Relevant Equations
##[\hat{p}, \hat{x}^{n}] = - i \hbar n x^{n-1}##
Hello, I need to solve the commutator relations above. I found the equation above for the last one, but I am not sure, if something similar applys to the first one. I am a little bit confused, because I know there has to be a trick and you don't solve it like other commutator.
Thanks for your help!
 
Physics news on Phys.org
Are you familiar with the expansion of a commutator on the form ##[AB,C]##? If not, take the time to write it out and see if you can express it in terms of commutators containing only two operators.
 
You understand, of course, that the relevant equation is what you need to prove. You can do this using mathematical induction and the identity suggested by @Orodruin.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top