How Do You Solve These Commutator Relations?

Juli
Messages
24
Reaction score
6
Homework Statement
Solve ##[\hat{r}^{17}, \hat{p}]## and ##[\hat{r}, \hat{p}^{250}]##
Relevant Equations
##[\hat{p}, \hat{x}^{n}] = - i \hbar n x^{n-1}##
Hello, I need to solve the commutator relations above. I found the equation above for the last one, but I am not sure, if something similar applys to the first one. I am a little bit confused, because I know there has to be a trick and you don't solve it like other commutator.
Thanks for your help!
 
Physics news on Phys.org
Are you familiar with the expansion of a commutator on the form ##[AB,C]##? If not, take the time to write it out and see if you can express it in terms of commutators containing only two operators.
 
You understand, of course, that the relevant equation is what you need to prove. You can do this using mathematical induction and the identity suggested by @Orodruin.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
710
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K
Replies
14
Views
2K
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K