How Do You Solve These Commutator Relations?

Juli
Messages
24
Reaction score
6
Homework Statement
Solve ##[\hat{r}^{17}, \hat{p}]## and ##[\hat{r}, \hat{p}^{250}]##
Relevant Equations
##[\hat{p}, \hat{x}^{n}] = - i \hbar n x^{n-1}##
Hello, I need to solve the commutator relations above. I found the equation above for the last one, but I am not sure, if something similar applys to the first one. I am a little bit confused, because I know there has to be a trick and you don't solve it like other commutator.
Thanks for your help!
 
Physics news on Phys.org
Are you familiar with the expansion of a commutator on the form ##[AB,C]##? If not, take the time to write it out and see if you can express it in terms of commutators containing only two operators.
 
You understand, of course, that the relevant equation is what you need to prove. You can do this using mathematical induction and the identity suggested by @Orodruin.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top