MHB How Do You Write an Expression for the Cost of Running a Machine?

mathdad
Messages
1,280
Reaction score
0
The cost of running a machine is partly constant and partly varies as the number of parts machined. Write an expression to show the cost?

My Reasoning:

Let C = cost

Let x = partly constant

Let y = partly varies

Let k = constant of proportionality

C = x + yk

Right?
 
Mathematics news on Phys.org
I would have thought "partly constant and partly varies" means one part varies, and one part is constant.. Since a varying constant is.. well, a variable? I'm not sure though. The wording is strange with this one.
 
Let's let $F$ be the fixed costs and $M$ be the marginal cost (the cost to machine one part), and $x$ be the number of parts machined. Then the total cost $C$ would be given by:

$$C(x)=Mx+F$$
 
MarkFL said:
Let's let $F$ be the fixed costs and $M$ be the marginal cost (the cost to machine one part), and $x$ be the number of parts machined. Then the total cost $C$ would be given by:

$$C(x)=Mx+F$$

We used different variables but correct nonetheless.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top