Reshma
- 749
- 6
This one is from Griffiths' book on ED.
For a configuration of charges and currents confined within a volume V, show that,
\int_V \vec J d\tau = \frac{d\vec p}{dt}
where \vec p is the total dipole moment.
Well, I tried it!
\frac{d\vec p}{dt} = \frac{d}{dt}\int_V \rho \vec r d\tau
\frac{d\vec p}{dt} = \int_V\frac{\partial \rho}{\partial t} \vec r <br /> d\tau
\frac{d\vec p}{dt} = -\int_V \left(\vec \nabla \cdot \vec J\right) \vec r d\tau
Now, please help me with this calculus!
For a configuration of charges and currents confined within a volume V, show that,
\int_V \vec J d\tau = \frac{d\vec p}{dt}
where \vec p is the total dipole moment.
Well, I tried it!
\frac{d\vec p}{dt} = \frac{d}{dt}\int_V \rho \vec r d\tau
\frac{d\vec p}{dt} = \int_V\frac{\partial \rho}{\partial t} \vec r <br /> d\tau
\frac{d\vec p}{dt} = -\int_V \left(\vec \nabla \cdot \vec J\right) \vec r d\tau
Now, please help me with this calculus!
Last edited: