spookyfish
- 53
- 0
Hi. This problem is about General Relativity. I am not actually taking a course, but studying myself. I tried to solve Hobson 2.7:
A conformal transformation is not a change of coordinates but an actual change in
the geometry of a manifold such that the metric tensor transforms as \bar{g}_{ab}(x)=\Omega^2(x) g_{ab}(x), where \Omega (x) is some non-vanishing scalar function of position. In a pseudo-Riemannian manifold, show that if x^a(\lambda) is a null curve with respect to g_{ab} (i.e. ds^2=0 along the curve), then it is also a null curve with respect to \bar{g}_{ab}. Is this true for timelike curves?
for null curves:
<br /> ds^2=g_{\mu \nu} \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} (d\lambda)^2=0<br /> \\<br /> \therefore g_{\mu \nu} \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda}=0<br />
after the conformal transformation, we have
<br /> ds^2=\Omega^2 g_{\mu \nu}dx^\mu dx^\nu<br /> =g_{\mu \nu}(\Omega dx^\mu) (\Omega dx^\nu)<br />
and along the path x^\mu(\lambda):
<br /> ds^2=g_{\mu \nu} \left[\frac{d}{d\lambda}(\Omega dx^\mu) \frac{d}{d\lambda}(\Omega dx^\nu) \right] (d\lambda)^2<br /> <br /> \\=g_{\mu \nu}\left(\frac{d\Omega}{d\lambda}dx^\mu +\Omega \frac{dx^\mu}{d\lambda} \right)<br /> \left(\frac{d\Omega}{d\lambda}dx^\nu +\Omega \frac{dx^\nu}{d\lambda} \right) (d\lambda)^2<br /> <br /> \\=g_{\mu \nu} \left\{ \left(\frac{d\Omega}{d\lambda}\right)^2 dx^\mu dx^\nu<br /> +\Omega \frac{d\Omega}{d\lambda} \left(dx^\mu \frac{dx^\nu}{d\lambda} + \frac{dx^\mu}{d\lambda} dx^\nu \right) +\Omega^2 \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} \right\} (d\lambda)^2<br /> <br /> \\= g_{\mu \nu} \left\{ \left(\frac{d\Omega}{d\lambda}\right)^2 \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} (d\lambda)^4<br /> + 2\Omega \frac{d\Omega}{d\lambda} \left(\frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} \right) (d\lambda)^3<br /> + \Omega^2 \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} (d\lambda)^2 \right\}<br /> <br /> \\= \left( g_{\mu \nu} \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} \right) <br /> \left( \left(\frac{d\Omega}{d\lambda}\right)^2(d\lambda)^2+ 2\Omega \frac{d\Omega}{d\lambda}d\lambda +\Omega^2 \right)(d\lambda)^2 = 0<br />
now in the last line, the first term vanishes because of the null curve for the original g_{\mu \nu}, so the whole ds^2 after the transformation vanishes, which means it is a null curve.
Is this solution correct?
Homework Statement
A conformal transformation is not a change of coordinates but an actual change in
the geometry of a manifold such that the metric tensor transforms as \bar{g}_{ab}(x)=\Omega^2(x) g_{ab}(x), where \Omega (x) is some non-vanishing scalar function of position. In a pseudo-Riemannian manifold, show that if x^a(\lambda) is a null curve with respect to g_{ab} (i.e. ds^2=0 along the curve), then it is also a null curve with respect to \bar{g}_{ab}. Is this true for timelike curves?
Homework Equations
for null curves:
<br /> ds^2=g_{\mu \nu} \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} (d\lambda)^2=0<br /> \\<br /> \therefore g_{\mu \nu} \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda}=0<br />
The Attempt at a Solution
after the conformal transformation, we have
<br /> ds^2=\Omega^2 g_{\mu \nu}dx^\mu dx^\nu<br /> =g_{\mu \nu}(\Omega dx^\mu) (\Omega dx^\nu)<br />
and along the path x^\mu(\lambda):
<br /> ds^2=g_{\mu \nu} \left[\frac{d}{d\lambda}(\Omega dx^\mu) \frac{d}{d\lambda}(\Omega dx^\nu) \right] (d\lambda)^2<br /> <br /> \\=g_{\mu \nu}\left(\frac{d\Omega}{d\lambda}dx^\mu +\Omega \frac{dx^\mu}{d\lambda} \right)<br /> \left(\frac{d\Omega}{d\lambda}dx^\nu +\Omega \frac{dx^\nu}{d\lambda} \right) (d\lambda)^2<br /> <br /> \\=g_{\mu \nu} \left\{ \left(\frac{d\Omega}{d\lambda}\right)^2 dx^\mu dx^\nu<br /> +\Omega \frac{d\Omega}{d\lambda} \left(dx^\mu \frac{dx^\nu}{d\lambda} + \frac{dx^\mu}{d\lambda} dx^\nu \right) +\Omega^2 \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} \right\} (d\lambda)^2<br /> <br /> \\= g_{\mu \nu} \left\{ \left(\frac{d\Omega}{d\lambda}\right)^2 \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} (d\lambda)^4<br /> + 2\Omega \frac{d\Omega}{d\lambda} \left(\frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} \right) (d\lambda)^3<br /> + \Omega^2 \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} (d\lambda)^2 \right\}<br /> <br /> \\= \left( g_{\mu \nu} \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} \right) <br /> \left( \left(\frac{d\Omega}{d\lambda}\right)^2(d\lambda)^2+ 2\Omega \frac{d\Omega}{d\lambda}d\lambda +\Omega^2 \right)(d\lambda)^2 = 0<br />
now in the last line, the first term vanishes because of the null curve for the original g_{\mu \nu}, so the whole ds^2 after the transformation vanishes, which means it is a null curve.
Is this solution correct?
Last edited: