Well frankly I feel nothing is served by laying down definitions that sound even more formalistic and hifalutin than the textbooks and getting hung up on them. Some of your paragraphs just made my head spin. Just use whatever definitions and conventions there are in your textbook. I note that neither your equation nor the laws as formulated in Wiki mention the direction of flow. It is quite clear that oxidation is removal of electrons.
OmniReader said:
1) Faraday's law is exact, if Q_passed is known exactly
As far as I know it is exact. All I can see it depending on (apart from the solid assumptions I have mentioned) is ion transport being the only conduction mechanism. As pure water without electrolytes has very low conductivity that seems a safe assumption. However it is equally true whether the Q passed is known exactly or inexactly, or not known at all.
However this question gives me the chance to point out something not often mentioned that I ever saw. The laws according to Wiki are:
Faraday's 1st Law of Electrolysis - The mass of a substance altered at an electrode during electrolysis is directly proportional to the quantity of electricity transferred at that electrode. Quantity of electricity refers to the quantity of electrical charge, which measured in coulombs.
Faraday's 2nd Law of Electrolysis - For a given quantity of D.C electricity (electric charge), the mass of an elemental material altered at an electrode is directly proportional to the element's equivalent weight.
In a manner of speaking you could say that Faradays laws have nothing to do with electricity, and that the first law is superfluous.
To explain - the quantity of charge transferred is measured in Coulombs. For a long time
the coulomb was defined electrochemically. If you look in old textbooks you will find the coulomb defined as the amount of charge that causes some ridiculous number of grams of silver to be deposited in an electrochemical cell.* If that that defines the quantity of electricity then the first law is contained in the second.
And together they could be restated something like “chemical equivalents in electrochemistry are the same as in ordinary chemistry”.
The historical fact (I do not know the history very well) is that the same Faraday who pioneered electrochemistry also pioneered electromagnetism. So no doubt he measured the currents in his electrochemical experiments with an electromagnetic device, and formulated the laws that way. He was deep into the unity of all these things. But someone else might have done just electrochemistry alone quite well and could have formulated the law chemically without ever seeing an ammeter, and we would probably be to this day teaching the subject slightly differently.
The silver deposition lends itself to fairly accurate measurement, that is why it became the standard. But at some point it proved possible to measure better, more precisely I suppose, by electromagnetic force of a current, and they made that the standard for the ampere and the coulomb that multiplied by a time. That is what it is now.
But don’t invest too much into it because next year they are going to change it into something more chemical again!
http://en.wikipedia.org/wiki/New_SI_definitions
*then the ampere that per second or maybe at one time per hour