How does gravity convert potential energy to kinetic?

AI Thread Summary
Gravity converts potential energy to kinetic energy through the work done by the gravitational force over a distance. When a ball is held above the ground, it possesses gravitational potential energy as part of the Earth-ball system. Upon release, the Earth does work on the ball, allowing it to gain kinetic energy as it falls. The conservation of mechanical energy dictates that the total energy changes in the system must sum to zero, accounting for both the ball and the Earth. This understanding clarifies that energy transfer involves both bodies, challenging the oversimplified view that the ball solely possesses mechanical energy.
sayetsu
Messages
46
Reaction score
3
If I hold a ball above the ground, it has potential energy. Once gravity pulls on it, it becomes kinetic. What is gravity and how does it convert one kind of energy to another?
 
Physics news on Phys.org
Energy is converted or transferred by work. This is a force (gravity) applied over a distance (falling).
 
  • Like
Likes russ_watters
sayetsu said:
If I hold a ball above the ground, it has potential energy.
That's a common misconception often asserted in textbooks and websites. Here is the correct way to see it.
Potential energy is a shared quantity and it takes two to "have" it. When you hold a ball above ground, the two-body Earth-ball system has gravitational potential energy. Now you can choose your system any way you please. Specifically, if you choose just the ball as your system and you drop it, then the Earth does work on the ball which acquires kinetic energy. Because the position of the ball changes relative to the Earth, the potential energy of the Earth-ball system will also change. Mechanical energy conservation requires that the sum of energy changes be zero:$$\Delta K_{\text{ball}}+\Delta K_{\text{Earth}}+\Delta U_{\text{grav.}}=0.$$Now if you drop the ball, the Earth's gain in kinetic energy is very small relative to the ball's because the Earth's mass is so huge that its acceleration is about 10-24 times the acceleration of the ball. Thus, people omit the ##\Delta K_{\text{Earth}}## term from the equation and simplify the picture by saying that the ball "has" all the mechanical energy there is and shares nothing with the Earth. It's a simpler picture but distorts how people think of energy transfers between kinetic and potential terms.
 
Last edited:
  • Informative
  • Like
Likes Lnewqban and anorlunda
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Back
Top