MHB How Does Professor Roberto's Grading System Affect Student Scores?

Click For Summary
Professor Roberto's grading system significantly impacts student scores, primarily influenced by their fandom for the Lakers and the language of their responses. The grading scale ranges from 4 to 1, with deductions for being a Lakers fan and for answering in English. The probabilities indicate that 70% of students are not Lakers fans, while 29% are fans who speak English, and 21% speak English but are not fans. To calculate the probability distribution of grades, one must consider the combinations of these factors, leading to specific probabilities for each possible grade. Understanding these probabilities allows for a clearer picture of how the grading system functions.
alfred2
Messages
8
Reaction score
0
Professor Roberto has to take an oral examination. The grading scale is as follows: 5: = best and 1: = worst. At most he only gives the note 4. Each student under review is questioned if he is a Lakers fan. The student's grade is based on his answer (is a fan / not a fan) and on the language in which he answered (not English / English): If the student is a fan of the Lakers reduces his note 2 points. If he answers in English reduces his note 1 point. These reductions are additive so the notes which can be obtained are {4,3,2,1}

Is fulfilled:
With probability 0.7 the student is not a fan of the Lakers
With probability 0.29 the student is a fan of the Lakers and speaks English
With probability 0.21 the student speaks English but is not a fan of the Lakers

Let N be the random variable indicating the student note. Calculate the density of N.
Can anyone help me? How/Where should I start doing this exercises? What does density mean?
 
Mathematics news on Phys.org
Well a good start would be to understand all the words of the question. A probability density function is basically (loosely put) a function which, for any interval $[a, b]$, the probability that the random variable takes on a value between $a$ and $b$. We let:
$$P(a \leq X \leq b) = \int_a^b f_X(x) ~ \text{d} x$$
And we say that the random variable $X$ has density $f_X(x)$. And the probability that $X$ is between $a$ and $b$ is just the area under the curve of $f_X(x)$ between $x = a$ and $x = b$. Now that's for continuous distributions. But you have a discrete distribution (the professor can only grade 1, 2, 3, ..., he can't grade 2.4, or 0.954, or $\pi$, ..). So we need to modify this a bit. In the discrete world, integrals become plain sums, and "density" isn't as meaningful (though it is still the correct term) so we'll just call it "probability":
$$P(a \leq X \leq b) = \sum_{x = a}^b p(x)$$
Where $p(x)$ is the probability that discrete random variable $X$ takes the value $x$.

As you can see, this is intuitive. Now what we want is to find the function $p(x)$ (the "density") which indicates the probability of the professor grading 1, 2, 3, and so on.

We immediately see that $p(5) = 0$, since it is said the professor never grades 5, so the probability of him grading 5 is zero.

Now the other values of the function $p$ depend on two things - whether the student is a Lakers fan, and on the language he used to answer. The professor starts with grade 4 and subtracts points depending on the factors above.

Now we are given a few probabilities. You can see there is one conspicuously missing: the probability that the student speaks English (period). Can you work out this probability from the given data using rules of probability you learned (exclusion/inclusion, conditional probability, ..)?

When you have the probability that a student is a fan of the Lakers (given to you) and the probability that the student speaks English (work it out) you can now work out the values of $p$ at any point. Here is the working for the first value, you will work out the others. Let's find $p(4)$.

We know the professor grades 4 if and only if the student is not a fan of the Lakers (otherwise he gets his grade decreased by 2) and if he does not speak English (otherwise he loses one point). Knowing the probabilities of this happening for some random student, what would be the probability that the professor grades 4? These are two events which must be satisfied, so:
$$p(4) = P(\text{student is not a fan of the Lakers}) \times P(\text{student does not speak English})$$
The values of $p(3)$, $p(2)$, and $p(1)$ can be worked out with a similar reasoning.

Does it make more sense now?​
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 25 ·
Replies
25
Views
8K
  • · Replies 13 ·
Replies
13
Views
10K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
17
Views
6K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K