MHB How Does Scaling a Set Affect Its Supremum and Infimum?

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Supremum
alexmahone
Messages
303
Reaction score
0
If $c>0$, prove that

$\sup cA=c\sup A$ and $\inf cA=c\inf A$

My proof:

$x\le\sup A$ for all $x\in A$.

$cx\le c\sup A$ for all $x\in A$ ie $x\le c\sup A$ for all $x\in cA$. ------ (1)

$x\le b$ for all $x\in A\implies\sup A\le b$

$cx\le cb$ for all $x\in A\implies c\sup A\le cb$

$x\le cb$ for all $x\in cA\implies c\sup A\le cb$ ------ (2)

From (1) and (2), we see that $\sup cA=c\sup A$.

-------------------------------------------------------------------

$x\ge\inf A$ for all $x\in A$.

$cx\ge c\inf A$ for all $x\in A$ ie $x\ge c\inf A$ for all $x\in cA$. ------ (3)

$x\ge b$ for all $x\in A\implies\inf A\ge b$

$cx\ge cb$ for all $x\in A\implies c\inf A\ge cb$

$x\ge cb$ for all $x\in cA\implies c\inf A\ge cb$ ------ (4)

From (3) and (4), we see that $\inf cA=c\inf A$.

-------------------------------------------------------------------

Is that ok?
 
Physics news on Phys.org
Alexmahone said:
If $c>0$, prove that
$\sup cA=c\sup A$ and $\inf cA=c\inf A$
My proof:
$x\le\sup A$ for all $x\in A$.
$cx\le c\sup A$ for all $x\in A$ ie $x\le c\sup A$ for all $x\in cA$. ------ (1)
$x\le b$ for all $x\in A\implies\sup A\le b$
$cx\le cb$ for all $x\in A\implies c\sup A\le cb$
$x\le cb$ for all $x\in cA\implies c\sup A\le cb$ ------ (2)
From (1) and (2), we see that $\sup cA=c\sup A$.
It is not clear that you have shown $\sup cA=c\sup A$.
It is clear that $\sup cA\le c\sup A$.
What if $\sup cA < c\sup A~?$
 
Plato said:
It is not clear that you have shown $\sup cA=c\sup A$.
It is clear that $\sup cA\le c\sup A$.
What if $\sup cA < c\sup A~?$

The statement $x\le cb$ for all $x\in cA\implies c\sup A\le cb$ takes care of that.

This basically means that if there is another upper bound, it will be $\ge c\sup A$. So, $c\sup A$ is the smallest upper bound of $cA$.
 
Last edited:
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top