How does smoothing an AC voltage with a capacitor work?

Click For Summary
Smoothing AC voltage with a capacitor involves charging the capacitor to its peak voltage, which occurs when the AC source delivers sufficient current, minus a small voltage drop across the diode. The discussion addresses confusion regarding the capacitor's discharge calculations, particularly in parts (iii) and (iv), where the participant miscalculates the voltage difference during discharge. Clarification is provided that the peak voltage is 20V, leading to a maximum amplitude of 10V when considering peak-to-peak values. Additionally, "conducting" refers to the diode allowing current flow when the input voltage exceeds the output voltage, which does not occur continuously. Understanding these concepts is crucial for accurately solving the problems presented.
phantomvommand
Messages
287
Reaction score
39
Screenshot 2021-03-11 at 8.14.51 PM.png

Specifically for part (i) and (ii), I get the rough idea that when the voltage of the AC source is decreasing, the capacitor can discharge to "cushion" the drop in voltage. However, I have some questions about when this occurs.

1. There is an assumption that the capacitor will be charged to maximum when the AC voltage reaches its peak. Why is this assumption (largely) true?

2. How should I solve part (iii) and part (iv)?
For part (iii), I know that the period of discharge is approximately 1/f = 0.02, and RC = 0.5.
The capacitor should have Voltage = 20(e^-0.02/0.5), and the maximum voltage is 20V. The difference of the 2 values is 0.78, which is twice the correct answer of 0.39V. (BTW I am assuming 20V is the max voltage, not the RMS value, do correct me if I'm wrong.)

For part (iv), I think I am not very clear on what "conducting" means. I took "conducting" to mean "allows current to flow through", isn't that just 50% of the time?

All help is appreciated, thank you!
 
Physics news on Phys.org
Hi,
phantomvommand said:
1. There is an assumption that the capacitor will be charged to maximum when the AC voltage reaches its peak. Why is this assumption (largely) true?
If the voltage source can deliver the necessary current, then the capacitor is charged up to the maximum voltage minus the (small) voltage drop over the diode.
Before we delve into iii and iv, please post your sketches and describe them in some detail. Then your questions about them will be easier to tackle.
 
BvU said:
Hi,
If the voltage source can deliver the necessary current, then the capacitor is charged up to the maximum voltage minus the (small) voltage drop over the diode.
Before we delve into iii and iv, please post your sketches and describe them in some detail. Then your questions about them will be easier to tackle.
Screenshot 2021-03-11 at 9.02.12 PM.png

Thanks for the reply. Above are my sketches. Due to smaller RC value for the 100 ohm case, the capacitor discharges much much faster. I think that part (iii) is asking for the difference in potential between the point where the potential of discharged capacitor = potential of AC source, and the maximum point.
 
phantomvommand said:
For part (iii), I know that the period of discharge is approximately 1/f = 0.02, and RC = 0.5.
The capacitor should have Voltage = 20(e^-0.02/0.5), and the maximum voltage is 20V. The difference of the 2 values is 0.78, which is twice the correct answer of 0.39V. (BTW I am assuming 20V is the max voltage, not the RMS value, do correct me if I'm wrong.)
The 20 V is given is said to be peak-to-peak, so the amplitude is 10 V and there is your factor 2.

phantomvommand said:
For part (iv), I think I am not very clear on what "conducting" means. I took "conducting" to mean "allows current to flow through", isn't that just 50% of the time?
The diode conducts if the voltage at the anode (input) is greater than the voltage at the cathode (output )
1615468525693.png

So you are supposed to set up some equation and estimate the time this is the case.

##\ ##
 
  • Like
Likes phantomvommand

Similar threads

Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
13K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K