A How Does the Non-Equality of Kernels Imply Their Sum Equals the Vector Space?

  • A
  • Thread starter Thread starter Portuga
  • Start date Start date
  • Tags Tags
    Kernel
Portuga
Messages
56
Reaction score
6
TL;DR Summary
Let ##F## and ##G## be two non-zero linear functionals over a vector space ##V## of dimension ##n##. Assuming ##ker (F ) \neq \ker (G)##, determine the dimensions of the following subspaces: ##\ker (F )##, ##\ker (G)##, ##\ker (F ) + \ker (G)##, and ##\ker (F ) \cap \ker (G)##.
This is actually a solved exercise from a Brazilian book on Linear Algebra. The author presented the following solution:

The kernel and image theorem tells us that dimension ##\dim V=n=\dim\ker\left(F\right)+\dim \text{im}\left(F\right)=\dim\ker\left(G\right)+\dim\text{im}\left(G\right)##. As ##\text{im}\left(F\right)\subset R##, ##\dim\mathbb{R}=1## and ##F\neq0##, then ##\dim\text{im}\left(F\right)=1##. Similarly ##\dim\text{im}\left(G\right)=1##. Therefore, ##\dim\ker\left(F\right)=\dim\ker\left(G\right)=n-1##. On the other hand, the dimension theorem of the sum assures us that

$$
\dim\left(\ker\left(F\right)+\ker\left(G\right)\right)+\dim\left(\ker\left(F\right)\cap\ker\left(G\right)\right)=\dim\ker\left(F\right)+\dim\ker\left(G\right)=2n-2.
$$

In general, ##\ker\left(G\right)\subset\ker\left(F\right)+\ker\left(G\right)## and due to the hypothesis ##\ker\left(F\right)\neq\ker\left(G\right)##, we will have ##\ker\left(F\right)\begin{array}{c}

\subset \\ \neq \end{array}\ker\left(F\right)+\ker\left(G\right)##; then necessarily ##\ker\left(F\right)+\ker\left(G\right)=V##. So ##\dim\left(\ker\left(F\right)+\ker\left(G\right)\right)=n## and hence

$$
\dim\left(\ker\left(F\right)\cap\ker\left(G\right)\right)=\left(2n-2\right)=n-2.
$$

I am ok with almost everything he presented, but couldn't understand why

the hypothesis ##\ker\left(F\right)\neq\ker\left(G\right)## implies that ##\ker\left(F\right)+\ker\left(G\right)=V.##

Any ideas?

Thanks in advance.
 
Last edited:
Physics news on Phys.org
Do you understand why ##ker(F)\subsetneq ker(F)+ker(G)##?

Since the left hand side has dimension n-1, the right hand side must have dimension n or higher.
 
Office_Shredder said:
Do you understand why ##ker(F)\subsetneq ker(F)+ker(G)##?

Since the left hand side has dimension n-1, the right hand side must have dimension n or higher.
Oh my god! It was so simple!
Thank you very much!
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top