A How Does the Non-Equality of Kernels Imply Their Sum Equals the Vector Space?

  • A
  • Thread starter Thread starter Portuga
  • Start date Start date
  • Tags Tags
    Kernel
Portuga
Messages
56
Reaction score
6
TL;DR
Let ##F## and ##G## be two non-zero linear functionals over a vector space ##V## of dimension ##n##. Assuming ##ker (F ) \neq \ker (G)##, determine the dimensions of the following subspaces: ##\ker (F )##, ##\ker (G)##, ##\ker (F ) + \ker (G)##, and ##\ker (F ) \cap \ker (G)##.
This is actually a solved exercise from a Brazilian book on Linear Algebra. The author presented the following solution:

The kernel and image theorem tells us that dimension ##\dim V=n=\dim\ker\left(F\right)+\dim \text{im}\left(F\right)=\dim\ker\left(G\right)+\dim\text{im}\left(G\right)##. As ##\text{im}\left(F\right)\subset R##, ##\dim\mathbb{R}=1## and ##F\neq0##, then ##\dim\text{im}\left(F\right)=1##. Similarly ##\dim\text{im}\left(G\right)=1##. Therefore, ##\dim\ker\left(F\right)=\dim\ker\left(G\right)=n-1##. On the other hand, the dimension theorem of the sum assures us that

$$
\dim\left(\ker\left(F\right)+\ker\left(G\right)\right)+\dim\left(\ker\left(F\right)\cap\ker\left(G\right)\right)=\dim\ker\left(F\right)+\dim\ker\left(G\right)=2n-2.
$$

In general, ##\ker\left(G\right)\subset\ker\left(F\right)+\ker\left(G\right)## and due to the hypothesis ##\ker\left(F\right)\neq\ker\left(G\right)##, we will have ##\ker\left(F\right)\begin{array}{c}

\subset \\ \neq \end{array}\ker\left(F\right)+\ker\left(G\right)##; then necessarily ##\ker\left(F\right)+\ker\left(G\right)=V##. So ##\dim\left(\ker\left(F\right)+\ker\left(G\right)\right)=n## and hence

$$
\dim\left(\ker\left(F\right)\cap\ker\left(G\right)\right)=\left(2n-2\right)=n-2.
$$

I am ok with almost everything he presented, but couldn't understand why

the hypothesis ##\ker\left(F\right)\neq\ker\left(G\right)## implies that ##\ker\left(F\right)+\ker\left(G\right)=V.##

Any ideas?

Thanks in advance.
 
Last edited:
Physics news on Phys.org
Do you understand why ##ker(F)\subsetneq ker(F)+ker(G)##?

Since the left hand side has dimension n-1, the right hand side must have dimension n or higher.
 
Office_Shredder said:
Do you understand why ##ker(F)\subsetneq ker(F)+ker(G)##?

Since the left hand side has dimension n-1, the right hand side must have dimension n or higher.
Oh my god! It was so simple!
Thank you very much!
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...