How Does the Order of Convergence Relate to Numerical Schemes for ODEs?

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Convergence Numeric
Click For Summary
SUMMARY

The discussion centers on the relationship between the order of convergence and numerical schemes for ordinary differential equations (ODEs), specifically using the initial value problem (IVP) $\frac{dy}{dx}=y$ with $y(0)=1$. The analysis reveals that Euler's method demonstrates a first-order convergence, while the improved Euler's method and the 2nd order Runge-Kutta method both exhibit a second-order convergence. The 4th order Runge-Kutta method shows a fourth-order convergence. The hypothesis presented suggests that an explicit numerical scheme yielding $\lim_{n\to\infty}\left(\sum_{i=0}^{p}\left(\frac{1}{i!n^{i}} \right) \right)^n$ will achieve a convergence order of $p$.

PREREQUISITES
  • Understanding of ordinary differential equations (ODEs)
  • Familiarity with numerical methods, specifically Euler's method and Runge-Kutta methods
  • Knowledge of convergence concepts in numerical analysis
  • Experience with limit comparison tests and Taylor series expansions
NEXT STEPS
  • Research the application of L'Hôpital's rule in numerical analysis
  • Study the derivation and application of the Runge-Kutta methods
  • Explore the Taylor series and its relationship to convergence in numerical methods
  • Investigate implicit methods for ODEs and their convergence properties
USEFUL FOR

Mathematicians, numerical analysts, and students studying numerical methods for solving ordinary differential equations, particularly those interested in convergence rates and numerical scheme comparisons.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
A while back, I dug out a topic I worked on many years ago after taking a course in ordinary differential equations and I was left with an unanswered question, which I thought I would post here. While my question arose from studying numeric methods for approximating the solutions to ODEs, I feel it is probably more of a question in numeric analysis.

I was analyzing the correlation between the approximation methods for definite integrals and for first order initial value problems via the anti-derivative form of the Fundamental Theorem of Calculus. In an attempt to determine the rate of convergence for the various methods, I have observed what I believe to be a pattern, but had difficulty in proving a hypothesis.

I began by using the IVP:

$\displaystyle \frac{dy}{dx}=y$ where $y(0)=1$

and used the explicit numerical schemes to approximate y(1) which led to approximations for $e$.

Analysis of Euler's method (Riemann sum of regular partitions) gave rise to

$\displaystyle e=\lim_{n\to\infty}\left(1+\frac{1}{n} \right)^n$

Use of a limit comparison test shows this scheme to be of order 1.

Analysis of the improved Euler's method (trapezoidal scheme) and the 2nd order Runge-Kutta method (mid-point scheme) which both use Euler's method as a predictor-corrector, show that both give rise to:

$\displaystyle e=\lim_{n\to\infty}\left(1+\frac{1}{n}+\frac{1}{2n^2} \right)^n$

Use of a limit comparison test shows this scheme to be of order 2.

Analysis of the 4th order Runge-Kutta method (Simpson's or prismoidal scheme) gave rise to:

$\displaystyle e=\lim_{n\to\infty}\left(1+\frac{1}{n}+\frac{1}{2n^2}+\frac{1}{6n^3}+\frac{1}{24n^4} \right)^n$

Use of a limit comparison test shows this scheme to be of order 4.

My hypothesis is that an explicit numerical scheme that yields

(1) $\displaystyle e=\lim_{n\to\infty}\left(\sum_{i=0}^{p}\left(\frac{1}{i!n^{i}} \right) \right)^n$

will be of order $p$.

Interestingly, two of the implicit methods yield the formula

$\displaystyle e=\lim_{n\to\infty}\left(\frac{2n+1}{2n-1} \right)^n$

but I did not explore its rate of convergence or what type of formula an implicit method of order $p$ will yield.

While it was a simple enough matter to show that (1) is valid and that as p increases the rate of convergence improves, demonstrating that this rate of convergence increases linearly as $p$ is another matter entirely. I applied L'Hôpital's rule and Maclaurin expansions for logarithmic functions, but to no avail. I also looked into the use of a Taylor formula of order $p$ because of its relationship to the limit comparison test and its use in the derivation of the Runge-Kutta methods and the Maclaurin power series.

If anyone could shed some light on this or post links to relevant material, I would greatly appreciate it! :cool:
 
Physics news on Phys.org
Just to verify, I created an Excel sheet with these sequences.
A log-log-plot of n versus the error in the approximation from e, shows the rate of convergence.
And indeed for each approximation sequence we get a line with a slope that corresponds to the order of convergence.
It turns out that a sequence with powers up to 6, has a 6th order of convergence.

The quotient form $(\dfrac {2n+1}{2n-1})^2$ turns out to have convergence order 2.
It is also the only one that approaches e from above instead of from below.
 
Last edited:
I appreciate you taking the time to verify the rate of convergence up to $p=6$. (Yes)
 
Here's an observation.
Suppose we let p go to infinity, then we get for n=1:

$\qquad (\displaystyle\sum_{p=0}^\infty \dfrac{1}{p! n^p})^n = (1 + \frac 1 {2!} + \frac 1 {3!} + ...)^1 = e$

Hey! We know this sequence!
It is the Taylor expansion of $e^x$ for $x=1$.

And for higher values of n, we simply get $(e^{1/n})^n = e$.
So in the ultimate case we get a constant sequence of just e.
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
11
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K