How Does the Rotation Operator Affect Spin in Quantum Mechanics?

  • Context: Undergrad 
  • Thread starter Thread starter cristianbahena
  • Start date Start date
  • Tags Tags
    Operator Rotation Spin
Click For Summary
SUMMARY

The discussion centers on the mathematical representation of spin rotations in quantum mechanics, specifically using the rotation operator \( e^{\frac{iS_z\phi}{\hbar}} \) to transform the spin operator \( S_x \). The participants confirm that the correct transformation results in expressions involving exponential factors of \( \frac{i\phi}{2} \) applied to the eigenstates \( |+\rangle \) and \( |-\rangle \). The conversation emphasizes the distinction between applying the spin operator \( S_z \) and the exponential operator, clarifying that the latter induces a rotation by an angle \( \phi \).

PREREQUISITES
  • Understanding of quantum mechanics, specifically spin operators.
  • Familiarity with the mathematical representation of quantum states and operators.
  • Knowledge of the exponential operator in quantum mechanics.
  • Basic grasp of rotation operators and their applications in quantum systems.
NEXT STEPS
  • Study the derivation of the rotation operator \( e^{\frac{iS_z\phi}{\hbar}} \) in quantum mechanics.
  • Learn about the implications of the eigenstates \( |+\rangle \) and \( |-\rangle \) in quantum spin systems.
  • Explore the relationship between generators of rotations and their corresponding exponential operators.
  • Investigate the application of rotation operators in various quantum mechanical scenarios.
USEFUL FOR

Quantum physicists, students of quantum mechanics, and anyone interested in the mathematical foundations of spin and rotation in quantum systems will benefit from this discussion.

cristianbahena
Messages
16
Reaction score
1
for compute:
$$e^{\frac{iS_z\phi}{\hbar}}S_x e^{\frac{-iS_z\phi}{\hbar}}$$
so, if we use $$S_x=(\frac{\hbar}{2})[(|+><-|)+(|-><+|)]$$
$$e^{\frac{iS_z\phi}{\hbar}}(\frac{\hbar}{2})[(|+><-|)+(|-><+|)] e^{\frac{-iS_z\phi}{\hbar}}$$
so, why that is equal to $$(\frac{\hbar}{2})[\frac{i\phi}{2}|+><-|\frac{i\phi}{2}+\frac{-i\phi}{2}|-><+|\frac{-i\phi}{2}]$$

??
 
Last edited:
Physics news on Phys.org
cristianbahena said:
for compute:
$$e^{\frac{iS_z\phi}{\hbar}}S_x e^{\frac{-iS_z\phi}{\hbar}}$$
so, if we use $$S_x=(\frac{\hbar}{2})[(|+><-|)+(|-><+|)]$$
$$e^{\frac{iS_z\phi}{\hbar}}(\frac{\hbar}{2})[(|+><-|)+(|-><+|)] e^{\frac{-iS_z\phi}{\hbar}}$$
so, why that is equal to $$(\frac{\hbar}{2})[e^{\frac{i\phi}{2}}|+><-|\frac{i\phi}{2}+\frac{-i\phi}{2}|-><+|\frac{-i\phi}{2}]$$

??
Are you sure you typed the last expression correctly?
 
nrqed said:
Are you sure you typed the last expression correctly?
thanks! now it is correct
 
Ok. But this is strange, I would expect exponentials of ##i\phi/2## instead of just factors of ## i \phi/2##. You are sure there are no exponentials in the final result??
 
Of course there should be exponentials since the ##|\pm \rangle## kets are eigenvectors or ##\hat{S}_z##, that's very easy to see in the notation given in the OP.
 
vanhees71 said:
Of course there should be exponentials since the ##|\pm \rangle## kets are eigenvectors or ##\hat{S}_z##, that's very easy to see in the notation given in the OP.
Indeed. I was trying to lead the OP to the answer without giving it away too quickly :-)
 
  • Like
Likes   Reactions: vanhees71
nrqed said:
Ok. But this is strange, I would expect exponentials of ##i\phi/2## instead of just factors of ## i \phi/2##. You are sure there are no exponentials in the final result??

sorry!

for compute:
$$e^{\frac{iS_z\phi}{\hbar}}S_
x e^{\frac{-iS_z\phi}{\hbar}}$$
so, if we use $$S_x=(\frac{\hbar}{2})[(|+><-|)+(|-><+|)]$$
$$e^{\frac{iS_z\phi}{\hbar}}(\frac{\hbar}{2})[(|+><-|)+(|-><+|)] e^{\frac{-iS_z\phi}{\hbar}}$$
so, why that is equal to $$(\frac{\hbar}{2})[e^{\frac{i\phi}{2}}|+><-|e^{\frac{i\phi}{2}}+e^{\frac{-i\phi}{2}}|-><+|e^{\frac{-i\phi}{2}}]$$

??
 
cristianbahena said:
sorry!

for compute:
$$e^{\frac{iS_z\phi}{\hbar}}S_
x e^{\frac{-iS_z\phi}{\hbar}}$$
so, if we use $$S_x=(\frac{\hbar}{2})[(|+><-|)+(|-><+|)]$$
$$e^{\frac{iS_z\phi}{\hbar}}(\frac{\hbar}{2})[(|+><-|)+(|-><+|)] e^{\frac{-iS_z\phi}{\hbar}}$$
so, why that is equal to $$(\frac{\hbar}{2})[e^{\frac{i\phi}{2}}|+><-|e^{\frac{i\phi}{2}}+e^{\frac{-i\phi}{2}}|-><+|e^{\frac{-i\phi}{2}}]$$

??
Good, now we are talking!

The next step is this: do you know what we get if we apply ##S_z## to ##|+ \rangle ## ?

The next question is: do you know what we get if we apply ##e^{ S_z} ## ti ## |+ \rangle ##?
(I did not include the factors of ##i\phi/\hbar## for now, we can put them back at the next step).
 
"nrqed said:
Good, now we are talking!

The next step is this: do you know what we get if we apply ##S_z## to ##|+ \rangle ## ?

The next question is: do you know what we get if we apply ##e^{ S_z} ## ti ## |+ \rangle ##?
(I did not include the factors of ##i\phi/\hbar## for now, we can put them back at the next step).

i know that
$$S_z |+ >= \frac{\hbar}{2} |+ >$$

also $$ D_z(\phi)= 1+i\frac{S_z}{\hbar}\phi$$ operator of infinitesimal rotations, if we apply this operator $$n$$ times:

$$ (D_z(\phi))^n= (1+i\frac{S_z}{\hbar}\frac{\phi}{n})^n$$ in the limit $$ lim_{n\rightarrow \infty}(D_z(\phi))^n= lim_{n\rightarrow \infty}(1+i\frac{S_z}{\hbar}\frac{\phi}{n})^n=e^{ \frac{iS_z\phi}{\hbar}} $$
im not sure why $$n$$ is pressent in $$\frac{\phi}{n}$$ when apply n-times operator D
so
i think that:
we have

$$D_z(\phi)|+ >=1+i\frac{S_z}{\hbar}\phi|+>=(1+\frac{i\phi}{2})|+>$$
then

$$(D_z(\phi))^n|+ >=(1+i\frac{S_z}{\hbar}\frac{\phi}{n})^n|+>=(1+\frac{i\phi}{2})^n|+>$$
in the limit:
$$lim_{n\rightarrow \infty}(D_z(\phi))^n|+ >=lim_{n\rightarrow \infty}(1+i\frac{S_z}{\hbar}\frac{\phi}{n})^n|+>=lim_{n\rightarrow \infty}(1+\frac{i\phi}{2})^n|+>=e^{\frac{i\phi}{2}}|+>$$but also

$$S_z$$ is the generator of rotations so i f we apply $$S_z$$ to $$|+>$$ know the new ket was just rotated $$\phi^{'}$$, so the new ket is $$e^{i\phi^{'}}|+>$$ how i know that $$\phi^{'}= \phi$$?
 
Last edited:
  • #10
cristianbahena said:
i know that
$$S_z |+ >= \frac{\hbar}{2} |+ >$$

also $$ D_z(\phi)= 1+i\frac{S_z}{\hbar}\phi$$ operator of infinitesimal rotations, if we apply this operator $$n$$ times:

$$ (D_z(\phi))^n= (1+i\frac{S_z}{\hbar}\frac{\phi}{n})^n$$ in the limit $$ lim_{n\rightarrow \infty}(D_z(\phi))^n= lim_{n\rightarrow \infty}(1+i\frac{S_z}{\hbar}\frac{\phi}{n})^n=e^{ \frac{iS_z\phi}{\hbar}} $$
im not sure why $$n$$ is pressent in $$\frac{\phi}{n}$$ when apply n-times operator D
so
i think that:
we have

$$D_z(\phi)|+ >=1+i\frac{S_z}{\hbar}\phi|+>=(1+\frac{i\phi}{2})|+>$$
then

$$(D_z(\phi))^n|+ >=(1+i\frac{S_z}{\hbar}\frac{\phi}{n})^n|+>=(1+\frac{i\phi}{2})^n|+>$$
in the limit:
$$lim_{n\rightarrow \infty}(D_z(\phi))^n|+ >=lim_{n\rightarrow \infty}(1+i\frac{S_z}{\hbar}\frac{\phi}{n})^n|+>=lim_{n\rightarrow \infty}(1+\frac{i\phi}{2})^n|+>=e^{\frac{i\phi}{2}}|+>$$
Good work. That's all you need to answer the problem

but also

$$S_z$$ is the generator of rotations so i f we apply $$S_z$$ to $$|+>$$ know the new ket was just rotated $$\phi^{'}$$, so the new ket is $$e^{i\phi^{'}}|+>$$ how i know that $$\phi^{'}= \phi$$?
When we say that Sz is the generator of rotation, we do NOT mean that applying Sz will rotate the state. We mean that the exponential of ## i S \theta /\hbar ## will rotate the state by an angle ##\theta##. This was you showed above, with an angle ##\phi/2##.
 
  • #11
nrqed said:
Good work. That's all you need to answer the problem

When we say that Sz is the generator of rotation, we do NOT mean that applying Sz will rotate the state. We mean that the exponential of ## i S \theta /\hbar ## will rotate the state by an angle ##\theta##. This was you showed above, with an angle ##\phi/2##.
Good! Thanks
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
714
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K