How Does Time Dilation Affect Hawking Radiation Emission Near Black Holes?

mivanit
Messages
3
Reaction score
0
So I realize that I'm probably wrong about this, but it seems to me that Hawking radiation cannot be emitted only at the event horizon. If we make the (albeit almost certainly wrong) assumption that the quantity of emitted particles is directly proportional to the potential for gravitational tidal forces between two particles, we find that the radiation emitted becomes constant and independent of the radius, which is not the case.
So here is my question: how can things like time dilation differences between the virtual particles, probabilities of the relative velocities of the particles, etc. be accounted for when calculating the amount of particle splits, and also do these splits occur in just a set region around the black hole, or are they just most probably very close to the black hole?

(sorry for any breaking of etiquette/bad english/bad physics, this is my first post and I'm not exactly very knowledgeable about physics or anything else)
 
Physics news on Phys.org
Well, your premise needs adjusting. A gravitational potential gradient
##\nabla \phi##, results in tidal forces.
 
I think that is what I meant, difference between forces on two particles due to gravity
(sorry for bad english)
 
mivanit said:
If we make the (albeit almost certainly wrong) assumption that the quantity of emitted particles is directly proportional to the potential for gravitational tidal forces between two particles, we find that the radiation emitted becomes constant and independent of the radius

I don't understand how you're reaching this result. (It's not really germane to the main question anyway, as you'll see below, but since you admit you're not very knowledgeable about physics, I'm curious how you arrived at this result.)

mivanit said:
how can things like time dilation differences between the virtual particles, probabilities of the relative velocities of the particles, etc. be accounted for when calculating the amount of particle splits, and also do these splits occur in just a set region around the black hole, or are they just most probably very close to the black hole?

The picture of Hawking radiation being produced by pairs of virtual particles separated by tidal gravity, so one falls into the hole while the other flies away, although it is commonly found in pop science presentations, is only a heuristic picture, and doesn't really work if you're trying to gain insight into why the radiation is emitted near the horizon (except for the obvious point that, for one of the particles to fall into the hole, the pair can't be produced too far from the horizon). Unfortunately, there isn't really a simple way to explain what's going on that works better than the heuristic picture for this (at least, I don't know of one); you would have to delve into the actual quantum field theory calculation, which is quite a bit more complicated than the heuristic picture suggests.

mivanit said:
do these splits occur in just a set region around the black hole, or are they just most probably very close to the black hole?

There is no hard "cutoff" to the region where Hawking radiation is emitted; like all quantum processes, it is really a matter of probability. But the probability of emission drops off very steeply as the distance from the horizon increases.
 
Thank you so much for helping me!
as for how I "arrived" at it being directly proportional, I just assumed it would be related for trying to calculate power. sorry for bad wording on my part.
After trying several possibilities for area where radiation occurs i figure out pretty fast it is not directly proportional to tidal force haha
thank you again so much!
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top