Originally posted by einsteinian77
What exactly is the product mass and velocity. I can't seem to understand how one thing can be represented by the product of two completely different things. In other words, how is it possible to multiply a unit of mass by a unit of distance and time and end up with a unified answer.
To make these things easy to talk about, for starters it might help to
write the formula this way
?=1/2md^2/t^2
KE = (1/2) m V
2
I think that by ? you may mean kinetic energy----the energy or work invested in a thing's motion.
And by d^2/t^2 you clearly mean the speed squared.
This KE formula is a good approximate formula that works at ordinary everyday speeds, but gets off at "relativistic" speeds----that it, at large fractions of the speed of light.
What you seem to be asking is how is it possible to multiply mass by square of speed and get energy. It is a question about types of quantities and a bunch of algebra rules that interconnect the various types.
There are half a dozen people always around PF who can explain this and also explain why the KE formula works. So I will leave it
for someone else and just give a hint to think about.
One way to describe a FORCE is as the force needed to give a certain mass some definite amount of acceleration
So you can actually write a force as
m d/t
2
a certain mass m multiplied by an amount d/t
2 of acceleration
But a very good way to think of an amount of work or energy is as force x distance-----the energy that goes into pushing with a certain force F for a certain distance d.
So if you multiply a certain force m d/t
2
by a distance d, what do you get?