MHB How Is the Sampling Distribution of a Sample Mean Determined?

  • Thread starter Thread starter CGuthrie91
  • Start date Start date
  • Tags Tags
    Mean Sampling
Click For Summary
The sampling distribution of a sample mean is determined using the formula $$\bar{x}\sim N\left(\mu,\frac{\sigma}{\sqrt{n}}\right)$$ when the population standard deviation is known. In cases where the population mean and standard deviation are unknown, the sample mean can be approximated with $$\bar{x}$$, and the student-$t$ distribution should be used instead of the normal distribution. Understanding these concepts is crucial for solving related problems effectively. The discussion emphasizes the importance of knowing whether the population parameters are available for accurate calculations. Mastery of these principles is essential for tackling sampling distribution questions.
CGuthrie91
Messages
9
Reaction score
0
1. On this question I really have no idea how they got these answers so I just need someone to walk me through it step by step please

View attachment 42052. Part B on this question I don't know how to get the correct answer either

View attachment 4206
 

Attachments

  • Statistic question 1.PNG
    Statistic question 1.PNG
    6.5 KB · Views: 95
  • Statistic question 2.PNG
    Statistic question 2.PNG
    8.7 KB · Views: 85
Mathematics news on Phys.org
In your first problem, you're talking about the samping distribution of the mean. If the standard deviation of the population is known, you can use the normal distribution; that is,
$$\bar{x}\sim N\left(\mu,\frac{\sigma}{\sqrt{n}}\right),$$
where $\mu$ is as given, $\sigma$ is the population standard deviation (also given in this case), and $n$ is the sample size. As a side note: in most real-world applications, you don't know $\mu$ or $\sigma$. Not knowing the mean isn't such a big deal - just approximate with $\bar{x}$. But if you don't know $\sigma$, then you have to use the student-$t$ distributions instead of the normal distribution.

So, now that you know the sampling distribution, can you work out the rest of the problem?
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
1
Views
1K
Replies
31
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K