Hello Courtney,
We are given:
$$I=\int_0^1\sin\left(x^2 \right)\,dx$$
For the definitions of the Error Bound for the 3 methods, we identify:
$$a=0,\,b=1,\,f(x)=\sin\left(x^2 \right)$$
1.) The Error Bound $E_n$ for the Midpoint Rule is:
If there exists a number $M>0$ such that $\left|f''(x) \right|\le M$ for all $x$ in $[a,b]$, then:
$$E_n\le\frac{M(b-a)^3}{24n^2}$$
Using the function given, we find:
$$f''(x)=2\cos\left(x^2 \right)-4x^2\sin\left(x^2 \right)$$
Here is a plot of $y=\left|f''(x) \right|$ on the given interval:
View attachment 1079
We see that:
$$f''(1)=4\sin(1)-2\cos(1)\ge f''(x)$$ for all $x$ in the interval. Thus, we want:
$$\frac{\left(4\sin(1)-2\cos(1) \right)(1-0)^3}{24n^2}<0.00001$$
$$\frac{\left(2\sin(1)-\cos(1) \right)}{12n^2}<\frac{1}{100000}$$
or
$$n^2>\frac{25000}{3}\left(2\sin(1)-\cos(1) \right)\approx9521.99719789711$$
$$97^2<9521.99719789711<98^2$$
Hence, by taking $n\ge98$ we obtain the desired accuracy.
2.) The Error Bound $E_n$ for the Trapezoidal Rule is:
If there exists a number $M>0$ such that $\left|f''(x) \right|\le M$ for all $x$ in $[a,b]$, then:
$$E_n\le\frac{M(b-a)^3}{12n^2}$$
Using the results of 1.) we see that we want:
$$\frac{\left(4\sin(1)-2\cos(1) \right)(1-0)^3}{12n^2}<0.00001$$
$$\frac{\left(2\sin(1)-\cos(1) \right)}{6n^2}<\frac{1}{100000}$$
or
$$n^2>\frac{50000}{3}\left(2\sin(1)-\cos(1) \right)\approx19043.99439579422$$
$$137^2<19043.99439579422<138^2$$
Hence, by taking $n\ge138$ we obtain the desired accuracy.
3.) The Error Bound $E_n$ for Simpson's Rule is:
If there exists a number $M>0$ such that $\left|f^{(4)}(x) \right|\le M$ for all $x$ in $[a,b]$, then:
$$E_n\le\frac{M(b-a)^5}{180n^4}$$
Using the function given, we find:
$$f^{(4)}(x)=4\left(\left(4x^3-3 \right)\sin\left(x^2 \right)-12x^2\cos\left(x^2 \right) \right)$$
Here is a plot of $y=\left|f^{(4)}(x) \right|$ on the given interval along with the absolute maximum:
View attachment 1080
Thus, we want:
$$\frac{28.42851540309637345267676583(1-0)^5}{180n^4}<0.00001$$
$$\frac{28.42851540309637345267676583}{180n^4}<\frac{1}{100000}$$
or
$$n^4>15793.61966838687414037598101\bar{6}$$
$$11^4<15793.61966838687414037598101\bar{6}<12^4$$
Hence, by taking $n\ge12$ we obtain the desired accuracy.