MHB How many 10-digit numbers can be formed with product of digits equal to 2^{27}?

  • Thread starter Thread starter Marcelo Arevalo
  • Start date Start date
  • Tags Tags
    Combinatorics
AI Thread Summary
The discussion focuses on determining how many 10-digit numbers can be formed where the product of the digits equals 2^27. The only allowable digits are 1, 2, 4, and 8, which correspond to powers of 2. The calculations show that using nine 8's and one 1 yields 10 combinations, while eight 8's and one 4 and one 2 provide 90 combinations, and seven 8's with three 4's results in 120 combinations. The total number of valid 10-digit numbers is therefore 220. All digits must be a one-digit power of 2.
Marcelo Arevalo
Messages
39
Reaction score
0
How many 10-digit numbers are there such that the product of its digits is
equal to 2^{27}?
 
Mathematics news on Phys.org
What must be true of all the digits?
 
My son's solution:
please comment, thank you.

We can only use 4 digits : 1,2,4,8 (2^0 , 2^1, 2^2, 2^3)
if we use 9 8's
8-8-8-8-8-8-8-8 and 2^n
2^27 . 2^n = 2^27
2^n = 1

8,8,8,8,8,8,8,8,8,1 only possible digits if true are 9 8's.
_8_8_8_8_8_8_8_8_8 = 10 spaces to place the 1

10C1 = 10 ways to arrange the "1" . Thus, there are 10 of there numbers.

if we use 8 8's
8-8-8-8-8-8-8-8-x-y = 2^27
2^24 . xy = 2^27
xy = 2^3
since we only use 8 8's, we can't use 8.
(x,y) = (2,4) or (4,2)

_8_8_8_8_8_8_8_8_ _ spaces for numbers can be at the end.

since order matters : 10P2 . 10!/8! = 90 Ways if we use 7 8's
8-8-8-8-8-8-8 . abc = 2^27
2^21 . abc = 2^27
abc = 2^6
(a, b , c ) = (2^2, 2^2, 2^2)
= (4, 4, 4)

_8_8_8_8_8_8_8_ _ _ = 10 spaces
place all the three nos. can be at the end

10C3 = 120

we can no longer use 6 8's
since 8-8-8-8-8-8-4-4-4-4 \ne 2^27
2^36 \ne 2^27

Therefore : 10+90+120 = 220
 
Yes, I agree with your result. All digits must be a one-digit power of 2 (1,2,4,8).

If we use (8,8,8,8,8,8,8,8,8,1) we have:

$$N_1=\frac{10!}{9!}=10$$ ways to arrange.

If we use (8,8,8,8,8,8,8,8,4,2) we have:

$$N_2=\frac{10!}{8!}=90$$ ways to arrange.

If we use (8,8,8,8,8,8,8,4,4,4) we have:

$$N_3=\frac{10!}{7!\cdot3!}=120$$ ways to arrange.

So, the total number $N$ of such numbers is:

$$N=N_1+N_2+N_3=220$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top