Yes, I agree with your result. All digits must be a one-digit power of 2 (1,2,4,8).
If we use (8,8,8,8,8,8,8,8,8,1) we have:
$$N_1=\frac{10!}{9!}=10$$ ways to arrange.
If we use (8,8,8,8,8,8,8,8,4,2) we have:
$$N_2=\frac{10!}{8!}=90$$ ways to arrange.
If we use (8,8,8,8,8,8,8,4,4,4) we have:
$$N_3=\frac{10!}{7!\cdot3!}=120$$ ways to arrange.
So, the total number $N$ of such numbers is:
$$N=N_1+N_2+N_3=220$$