MHB How many 10-digit numbers can be formed with product of digits equal to 2^{27}?

  • Thread starter Thread starter Marcelo Arevalo
  • Start date Start date
  • Tags Tags
    Combinatorics
Marcelo Arevalo
Messages
39
Reaction score
0
How many 10-digit numbers are there such that the product of its digits is
equal to 2^{27}?
 
Mathematics news on Phys.org
What must be true of all the digits?
 
My son's solution:
please comment, thank you.

We can only use 4 digits : 1,2,4,8 (2^0 , 2^1, 2^2, 2^3)
if we use 9 8's
8-8-8-8-8-8-8-8 and 2^n
2^27 . 2^n = 2^27
2^n = 1

8,8,8,8,8,8,8,8,8,1 only possible digits if true are 9 8's.
_8_8_8_8_8_8_8_8_8 = 10 spaces to place the 1

10C1 = 10 ways to arrange the "1" . Thus, there are 10 of there numbers.

if we use 8 8's
8-8-8-8-8-8-8-8-x-y = 2^27
2^24 . xy = 2^27
xy = 2^3
since we only use 8 8's, we can't use 8.
(x,y) = (2,4) or (4,2)

_8_8_8_8_8_8_8_8_ _ spaces for numbers can be at the end.

since order matters : 10P2 . 10!/8! = 90 Ways if we use 7 8's
8-8-8-8-8-8-8 . abc = 2^27
2^21 . abc = 2^27
abc = 2^6
(a, b , c ) = (2^2, 2^2, 2^2)
= (4, 4, 4)

_8_8_8_8_8_8_8_ _ _ = 10 spaces
place all the three nos. can be at the end

10C3 = 120

we can no longer use 6 8's
since 8-8-8-8-8-8-4-4-4-4 \ne 2^27
2^36 \ne 2^27

Therefore : 10+90+120 = 220
 
Yes, I agree with your result. All digits must be a one-digit power of 2 (1,2,4,8).

If we use (8,8,8,8,8,8,8,8,8,1) we have:

$$N_1=\frac{10!}{9!}=10$$ ways to arrange.

If we use (8,8,8,8,8,8,8,8,4,2) we have:

$$N_2=\frac{10!}{8!}=90$$ ways to arrange.

If we use (8,8,8,8,8,8,8,4,4,4) we have:

$$N_3=\frac{10!}{7!\cdot3!}=120$$ ways to arrange.

So, the total number $N$ of such numbers is:

$$N=N_1+N_2+N_3=220$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top