How many cards can be taken at most while satisfying a certain rule?

  • Thread starter Thread starter songoku
  • Start date Start date
  • Tags Tags
    Cards
Click For Summary

Homework Help Overview

The discussion revolves around a card game involving two players, Paul and Allen, where specific rules dictate how many cards each player can take during their turns. The problem is centered on determining the maximum number of cards Paul can take while adhering to the game's rules.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants explore various combinations of card-taking strategies, questioning the implications of the rule (2n + 2) and how it affects the total cards taken by each player. Some participants express uncertainty about their interpretations of the problem and the wording of the question.

Discussion Status

There is an ongoing exploration of different strategies and interpretations of the game rules. Some participants have provided insights that suggest alternative approaches, while others are reflecting on their understanding of the problem. No explicit consensus has been reached regarding the correct interpretation or maximum number of cards Paul can take.

Contextual Notes

Participants note potential ambiguities in the wording of the question, which may affect their interpretations. There is also mention of an answer key that may not align with the reasoning presented in the discussion.

songoku
Messages
2,509
Reaction score
393
Homework Statement
Please see below
Relevant Equations
Not sure
1653741710930.png

The answer is 33 (based on the answer key).

At first, I thought Paul can just take all the 100 cards on 1st draw but since the answer is 33, obviously this thought is wrong. So I assume that the rule (2n + 2) must always be satisfied for each turn and all the cards must be taken (no card remained).

I try all the possible combinations:
Paul = 1 card → Allen = 4 cards
Paul = 2 cards → Allen = 6 cards
Paul = 3 cards → Allen = 8 cards
Paul = 4 cards → Allen = 10 cards
Paul = 5 cards → Allen = 12 cards
Paul = 6 cards → Allen = 14 cards
Paul = 7 cards → Allen = 16 cards
Paul = 8 cards → Allen = 18 cards
Paul = 9 cards → Allen = 20 cards
Paul = 10 cards → Allen = 22 cards
Paul = 11 cards → Allen = 24 cards
Paul = 12 cards → Allen = 26 cards
Paul = 13 cards → Allen = 28 cards
Paul = 14 cards → Allen = 30 cards
Paul = 15 cards → Allen = 32 cards
Paul = 16 cards → Allen = 34 cards
Paul = 17 cards → Allen = 36 cards
Paul = 18 cards → Allen = 38 cards
Paul = 19 cards → Allen = 40 cards
Paul = 20 cards → Allen = 42 cards
Paul = 21 cards → Allen = 44 cards
Paul = 22 cards → Allen = 46 cards
Paul = 23 cards → Allen = 48 cards
Paul = 24 cards → Allen = 50 cards
Paul = 25 cards → Allen = 52 cards
Paul = 26 cards → Allen = 54 cards
Paul = 27 cards → Allen = 56 cards
Paul = 28 cards → Allen = 58 cards
Paul = 29 cards → Allen = 60 cards
Paul = 30 cards → Allen = 62 cards
Paul = 31 cards → Allen = 64 cards
Paul = 32 cards → Allen = 66 cards

Then I tried several combinations but the maximum I can get is 32 cards:
a) Paul = 31 cards, Allen = 64 cards. Then Paul = 1 card, Allen = 4 cards → Total Paul's cards = 32 cards

b) Paul = 30 cards, Allen = 62 cards. Then Paul = 2 cards, Allen = 6 cards → Total Paul's cards = 32 cards

c) Paul = 29 cards, Allen = 60 cards. Then Paul = 3 cards, Allen = 8 cards → Total Paul's cards = 32 cards

d) Paul = 28 cards, Allen = 58 cards. Then Paul = 4 cards, Allen = 10 cards → Total Paul's cards = 32 cards

e) Paul = 27 cards, Allen = 56 cards. Then Paul = 5 cards, Allen = 12 cards → Total Paul's cards = 32 cards

f) Paul = 26 cards, Allen = 54 cards. Then Paul = 6 cards, Allen = 14 cards → Total Paul's cards = 32 cardsDo I even interpret the question correctly? Thanks
 
Physics news on Phys.org
After Paul takes a card, Allen only takes 1 card - if that card is available. So if Paul takes card #1, Allen must take card number 4. Paul could have taken card 4, but he wants to save it for Allen. Possible cards for Paul to take without ending the game are 1 through 49, minus the ones he saves for Allen.
 
  • Like
Likes   Reactions: songoku
.Scott said:
After Paul takes a card, Allen only takes 1 card - if that card is available. So if Paul takes card #1, Allen must take card number 4. Paul could have taken card 4, but he wants to save it for Allen. Possible cards for Paul to take without ending the game are 1 through 49, minus the ones he saves for Allen.
Ah so I did misinterpret the question.

Thank you very much for the explanation and help .Scott
 
Two parts of the question are worded strangely:
  • "Paul and Allen take the card"
  • "there are certain cards for Allen to take, but not for Paul"
I wonder if the question was translated incorrectly. As I understand the game, Paul can take 34 cards.
 
  • Like
Likes   Reactions: Delta2 and songoku
Prof B said:
Two parts of the question are worded strangely:
  • "Paul and Allen take the card"
  • "there are certain cards for Allen to take, but not for Paul"
I wonder if the question was translated incorrectly. As I understand the game, Paul can take 34 cards.
I just realize after reading your reply I also got 34 cards.

My attempt:
a) I started from the highest number Paul can take without ending the game (by ending the game I mean Allen can not take any card), which is card number 49

Then I decrease the number until the number Allen has to take is 50, so:
2n + 2 = 50
n = 24

This means Paul can take card number 24 to 49 → 26 cards

Paul can not take card number 11 to 23 because the game will end.

b) Then I started from card 1:
Paul takes number 1, Allen takes number 4
Paul takes number 2, Allen takes number 6
Paul takes number 3, Allen takes number 8
Paul takes number 5, Allen takes number 12
Paul takes number 7, Allen takes number 16
Paul takes number 9, Allen takes number 20
Paul takes number 10, Allen takes number 22
Paul takes number 11, Allen can not take any card so the game ends

Total cards Paul can take = 34 cards

Paul takes card number: 1, 2, 3, 5, 7, 9, 10 , 11 and 24 to 49 → 34 cards
Allen takes card number: 4, 6, 8, 12, 16, 20, 22 and all even numbered cards from 50 to 100 → 33 cards
Remaining cards: 13, 14, 15, 17, 18, 19, 21, 23 and all odd numbered cards from 51 to 99 → 33 cards

Not sure whether my interpretation is wrong or the answer key is wrong
 
Last edited:

Similar threads

Replies
11
Views
3K
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 14 ·
Replies
14
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K