How many kilocalories per gram are there in a 5.00-g peanut?

  • Thread starter Thread starter member 731016
  • Start date Start date
  • Tags Tags
    Per
AI Thread Summary
The discussion centers on calculating the kilocalories per gram in a 5.00-g peanut using calorimetry. The initial method proposed involved calculating heat lost by the peanut, but there was confusion regarding the role of the calorimeter, which includes both water and an aluminum container. The correct approach recognizes that the heat generated by burning the peanut raises the temperature of both the water and the container, leading to a revised equation. Clarification was provided on the ideal nature of the calorimeter and its components. Ultimately, understanding the calorimeter's function is crucial for accurate calculations in this context.
member 731016
Homework Statement
Please see below
Relevant Equations
Conservation of energy
For this,
1680400542713.png

The solution is,

1680400350012.png

However, I am not sure why they did part(a) like that. I thought we would do it like this:

##Q_{nut} + Q_{w} = 0## since calorimeter is ideal so energy is conserved in the nut-water system
##Q_{nut} =-Q_{w}##
##Q_{nut} = -(0.500)(4184)(54.9) = -1.15 \times 10^5 J##

Therefore, the heat lost by the nut is ##Q_{nut} = 1.15 \times 10^5 J = 27.45 \frac{kcal}{5.00g} = 5.49 \frac{kcal}{g}##

However, I don't understand their method for part(a), is there a mistake in mine?Many thanks!
 
Physics news on Phys.org
I think you misunderstood the measurement. For part (a) you generate heat ##Q## by burning 5 g of peanuts. The peanut at this point is gone but the heat is not. The heat is used to raise the temperature of two things, the water and the aluminum container which together form the calorimeter. It is these two that are assumed isolated from the rest of the world so that the heat ##Q## that is pumped into them goes into raising their common temperature by 54.9 °C. You misunderstood in what way the calorimeter is "ideal."
 
  • Like
Likes MatinSAR and member 731016
kuruman said:
I think you misunderstood the measurement. For part (a) you generate heat ##Q## by burning 5 g of peanuts. The peanut at this point is gone but the heat is not. The heat is used to raise the temperature of two things, the water and the aluminum container which together form the calorimeter. It is these two that are assumed isolated from the rest of the world so that the heat ##Q## that is pumped into them goes into raising their common temperature by 54.9 °C. You misunderstood in what way the calorimeter is "ideal."
Thank you for your reply @kuruman!

That is very helpful. I did not realize that the calorimeter included the aluminum container, so using my method I should have done ##Q_{nut} + Q_{w} + Q_{A1} = 0##
 
Yes.
 
  • Like
Likes MatinSAR and member 731016
kuruman said:
Yes.
Thank you for your help @kuruman!
 
  • Like
Likes berkeman and kuruman
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...

Similar threads

Back
Top