MHB How Many Pairs of (x,y) Satisfy the Given Equation?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Numbers Pair
Albert1
Messages
1,221
Reaction score
0
$x,y\in N$
$\dfrac {1}{x}+\dfrac {1}{y}=\dfrac {1}{2010}---(1)$

How many pairs of $(x,y)$ we may get to satisfy (1)
 
Mathematics news on Phys.org
My attempt:
Given the relation:

\[\frac{1}{x}+\frac{1}{y} = \frac{1}{2010}, \: \: \: x,y \in \mathbb{N}.\: \: \: \: \: \: \: \: (1)\]Both $x$ and $y$ must be greater than $2010$.Let $x = 2010 + k$, for some $k \in \mathbb{N}$.Then $y$ can be expressed as: \[y = \frac{2010(2010+k)}{k} = 2010 + \frac{2010^2}{k}\]The question is, how many different natural numbers, $k$, divide the square of $2010$ (including the trivial case $k = 1$)?The prime factorization of the square of $2010$ is: $2010^2 = 2^2 \cdot 3^2 \cdot 5^2 \cdot 67^2$. Thus, the number of divisors, i.e. the number of $(x,y)$-pairs is: $3^4 = 81$.

The answer implies, that a specific pair, e.g. $(2011,2010\cdot 2011)$ and its permutation $(2010\cdot 2011, 2011)$ both count. Otherwise, the answer would be $41$ pairs.
 
We have $2010 y + 2010 x = xy$
or $xy - 2010x - 2010y = 0$
or $(x-2010)(y-2010) = 2010^2= 2^2 * 3^2 * 5^2 * 67^2$
the above has $(2+1)(2+1)(2+1)(2+1) = 81$ factors in natural numbers
number if pairs = $81$
because (x,y) and (y,x) are different
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top