MHB How many possible lunch special combinations can be ordered

  • Thread starter Thread starter greprep
  • Start date Start date
  • Tags Tags
    Combinations
greprep
Messages
11
Reaction score
0
Hi All, I'm studying for the GRE, and really struggling with combination questions for some reason. I'm posting here quite a bit, but just wanted to say thank you so much for your help.

What would be the fastest way to solve the following?

"At Deb's Deli, a customer may choose either a sandwich and a salad or a sandwich and a soup for the lunch special. There are 5 choices of sandwich, 4 choices of salad, and 3 choices of soup. How many possible lunch special combinations can be ordered"
 
Mathematics news on Phys.org
greprep said:
Hi All, I'm studying for the GRE, and really struggling with combination questions for some reason. I'm posting here quite a bit, but just wanted to say thank you so much for your help.

What would be the fastest way to solve the following?

"At Deb's Deli, a customer may choose either a sandwich and a salad or a sandwich and a soup for the lunch special. There are 5 choices of sandwich, 4 choices of salad, and 3 choices of soup. How many possible lunch special combinations can be ordered"

One way would be to compute the number of possible sandwich/salad combinations are possible, then compute the number of sandwich/soup combinations are possible, and then add the two to get the total. Or, you could do it in one pass by looking at it as a sandwich/item problem, where you have 5 choices for sandwich and 7 choices for item (salad or soup) and apply the fundamental counting principle.

What do you get?
 
Would it then just be 5x4x3, according to the fundamental counting principal?
 
greprep said:
Would it then just be 5x4x3, according to the fundamental counting principal?

No, not quite...you have 5 sandwich options, and then for the second option, you have 3 + 4 options:

$$N=5(4+3)=\,?$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top