SweatingBear
- 119
- 0
How many real and non-real roots does $$z^5 = 32$$ have? $$z^9 = -4$$?
For $$z^5 = 32$$: $$z^5 = r^5 ( \cos 5v + i \sin 5v )$$ and $$32 = 32 ( \cos 0 + i \sin 0 )$$ yields
$$r = 2 \\ 5v = n \cdot 2\pi \iff v = n \cdot \dfrac {2\pi}5$$
So all roots are given by
$$z = 2 \left( \cos \left( n \cdot \frac {2\pi}5 \right) + i \sin \left( n \cdot \frac {2\pi}5 \right) \right)$$
where $$0 \leqslant n \leqslant 4, \ n \in \mathbb{Z}$$. Let us rule out all real roots by letting the imaginary part equal zero.
$$\sin \left( n \cdot \frac {2\pi}5 \right) = 0 \iff n \cdot \frac {2\pi}5 = k \cdot \pi \iff n = \frac {5k}2 $$
In order for $$n$$ to be an integer, $$2$$ must divide $$k$$. Thus $$k = 2p$$ where $$p \in \mathbb{Z}$$ and consequently $$n = 5p$$. With $$0 \leqslant n \leqslant 4$$ we have
$$0 \leqslant 5p \leqslant 4 \iff 0 \leqslant p \leqslant 0.8 \implies p \in \{ 0 \}$$
So there is one real root and the remaining four are non-real. Similar arguments for $$z^9 = -4$$ yield
$$9v = \pi + n \cdot 2\pi \iff v = \frac {\pi}9 + n \cdot \frac {2\pi}9$$
Equating the imaginary part to zero yields
$$\frac {\pi}9 + n \cdot \frac {2\pi}9 = k \cdot \pi \iff n = \frac {9k-1}2$$
$$2$$ must divide $$9k-1$$ so $$9k-1 = 2p$$. Using $$0 \leqslant n \leqslant 8$$ however yields $$0 \leqslant p \leqslant 8$$. The equation does not have $$9$$ real solutions, so what went wrong?
For $$z^5 = 32$$: $$z^5 = r^5 ( \cos 5v + i \sin 5v )$$ and $$32 = 32 ( \cos 0 + i \sin 0 )$$ yields
$$r = 2 \\ 5v = n \cdot 2\pi \iff v = n \cdot \dfrac {2\pi}5$$
So all roots are given by
$$z = 2 \left( \cos \left( n \cdot \frac {2\pi}5 \right) + i \sin \left( n \cdot \frac {2\pi}5 \right) \right)$$
where $$0 \leqslant n \leqslant 4, \ n \in \mathbb{Z}$$. Let us rule out all real roots by letting the imaginary part equal zero.
$$\sin \left( n \cdot \frac {2\pi}5 \right) = 0 \iff n \cdot \frac {2\pi}5 = k \cdot \pi \iff n = \frac {5k}2 $$
In order for $$n$$ to be an integer, $$2$$ must divide $$k$$. Thus $$k = 2p$$ where $$p \in \mathbb{Z}$$ and consequently $$n = 5p$$. With $$0 \leqslant n \leqslant 4$$ we have
$$0 \leqslant 5p \leqslant 4 \iff 0 \leqslant p \leqslant 0.8 \implies p \in \{ 0 \}$$
So there is one real root and the remaining four are non-real. Similar arguments for $$z^9 = -4$$ yield
$$9v = \pi + n \cdot 2\pi \iff v = \frac {\pi}9 + n \cdot \frac {2\pi}9$$
Equating the imaginary part to zero yields
$$\frac {\pi}9 + n \cdot \frac {2\pi}9 = k \cdot \pi \iff n = \frac {9k-1}2$$
$$2$$ must divide $$9k-1$$ so $$9k-1 = 2p$$. Using $$0 \leqslant n \leqslant 8$$ however yields $$0 \leqslant p \leqslant 8$$. The equation does not have $$9$$ real solutions, so what went wrong?
Last edited: