MHB How Many Students Are Not Involved in Any Afternoon Activities?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Elements Set
Yankel
Messages
390
Reaction score
0
Hello all,

I am struggling with this relatively simple task.

In a university with 88 students, each student can choose to participate in 3 afternoon activities: activity A, activity B and activity C. Each student can choose to participate in some activities, all or none.

33 students participate in activity A
28 students participate in activity B
33 students participate in activity C
14 students participate in activity A and B
18 students participate in activity A and C
10 students participate in activity B and C
6 students participate in activity A, B and C

1. How many students decided not to participate in any activity ?
2. How many students participate ONLY in activity A ?
3. How many students participate in activity A OR B, but NOT in C ?

I think I did "1" OK, I got that the answer is 30 (am I correct ?).

I solved it using union and intersection, and using the rule of union of 3 sets.

I find it hard to solve "2" and "3".
 
Physics news on Phys.org
You are correct for question 1. I find a Venn diagram is an invaluable tool for problems of this sort. Draw 3 intersecting circles to represent the 3 activities, and then work from the inside out, that is, start with the intersection of all 3, then fill in the 3 intersections of the pairs, and finally the 3 parts of each set with no intersection. You will then have all the information you need to easily answer the remaining 2 questions.

Can you proceed?
 
I think I understand what you mean by inside out, I think I can proceed, thank you !

Just for curiosity, isn't it also possible to be done using algebra of sets ?
 
Yankel said:
...
Just for curiosity, isn't it also possible to be done using algebra of sets ?

My inclination is that it is, but this is not an area in which I am very knowledgeable. I just find a Venn diagram to be very straightforward for a problem like this. :D
 
Ok, thanks :)

Just to verify, in "2" and "3", are the answers 7 and 10 ?
 
I agree with 7 for question 2, but for question 3 I have a different answer. I get 10 as the number of students participating only in activity B, but we need to include those that participate only in A AND in A and B (but not C).
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Back
Top